

LEAD Action News vol 9 no 3, June 2009 ISSN 1324-6011

Incorporating Lead Aware Times (ISSN 1440-4966) & Lead Advisory Service News (ISSN 1440-0561) The Journal of The LEAD (Lead Education and Abatement Design) Group Inc.

PO Box 161 Summer Hill NSW 2130 Australia Ph: (02) 9716 0014 Contact Us www.lead.org.au/cu.html Web:www.lead.org.au/

Iron Nutrition and Lead Toxicity

Contents

Iron Nutrition and Lead Toxicity: Interactions and Impacts	1
Glossary of technical terms	1
Iron Nutrition and Lead Toxicity - Citations	15
Source Guide: A guide to the source content of the best citations	30
Subscription Form for LEAD Group Membership & Donation Form for LEAF (Lead Education Abatement Fund)	
* DISCLAIMER:	32

Iron Nutrition and Lead Toxicity: Interactions and Impacts

Glossary of technical terms

ID – Iron deficiency: low stores of iron in the body

IDA –Iron Deficiency Anaemia: Deficiency and malformation of red blood cells caused by the lack of iron to produce haemoglobin. Not the only cause of anemia. Anemia may be hypochromic (pale blood cells due to lack of iron) or microcytic (small blood cells with fragile membranes and shorter life spans).

Haemoglobin – The iron compound that carries oxygen in red blood cells.

Serum – Material within the blood or bloodstream.

Myoglobin – Iron compound that stores oxygen in the muscles for rapid exertion

Ferritin - Standard iron storage molecule. Can store 4500 iron atoms in tight bonds that are dissolved when the atoms are passed to transferrin.

Transferrin - Standard iron transporter within the blood. Loosely binds two iron atoms for transport and transfer.

DMT1 (divalent metal transporter 1) – Transports 8 different metals (Fe, Zn, Mn, Co, Cd, Cu, Ni and Pb) at a cellular level. It is the primary iron transporter.

Reticulo-Endothelial Cells – Cells associated with the immune system scattered in relatively fixed positions (such as the spleen or connective tissue)

Macrophages – White blood cells contained within tissue. They engulf aging blood cell, dissolve them and allow the recycling of their contents (specifically iron). **Erythropoiesis** – The creation of new red blood cells.

Apoptosis – Cellular suicide (programmed cell death) carried out at the body's direction.

Ellastin and collegin – Connective tissues that provide form and flexibility to a number of body structures including the skin.

Zinc protoporphyrin – A zinc compound which replaces haemoglobin preventing normal oxygen transportation. It can be caused by iron deficiency or the presence of lead during the formation of red blood cells (erythrocytes).

Sickle cell disease – When a specific form of haemoglobin causes the blood cells to deform into a sickle shape. Must be distinguished from the sickle cell trait where a mixture of normal and sickle cells co-exist. **Helobactor Pylori (H Pylori)** – Bacteria that inhabits the stomach and are the primary cause of stomach ulcers. It most easily establishes itself in low acidic stomachs and once established further reduces acidity. **ADD/ADHD [Attention Deposit Hyperactivity Disorder]** – A neurobehavioral condition involving inattention, impulsiveness and sometimes hyperactivity **Hypertension** – Consistently high blood

Gestational Diabetes (or gestational diabetes mellitus, GDM) – a temporary diabetic state that can be produced by pregnancy.

Hepcidin – The hormone that regulates the body's iron metabolism. For a comprehensive outline of it's function see citations 123 and 124.

Haem iron [Haeme or Heme (US)] – Iron that is found in a porphyrin ring that allows it to more easily engage in certain organic interactions.

Phytates – Phosphorus based compounds that bind with calcium, magnesium, iron and zinc in the stomach and gut to produce insoluble (and indigestible) compounds. They have anti-carcinogenic impacts on the gut. **Polyphenols** – A large family of organic compounds with antioxidant properties. Major subgroups include tannins, lignins and flavanoids. Like phytates they can bind with other nutrients in the stomach and gut but many appear to have significant health benefits.

Carotenoids – Plant compounds that provide pigments that both absorb and protect plant cells from light. They provide most bright colours in vegetables other than light green.

Sideroblastic anemia – A form of anemia where iron stores are available but cannot be incorporated in blood cells. Lead toxicity, excessive zinc consumption and copper or pyridoxine (B6) deficiency can be contributing causes. It can also be hereditary.

Ischemic stroke – Stroke caused by blockage of a blood vessel

VLDL cholesterol – A form of cholesterol high in triglycerides. It is usually estimated as a percentage of your triglyceride value.

Iron Nutrition and Lead Toxicity: Interactions and Impacts

Iron and lead levels

Low levels of serum (blood) iron are associated with higher blood lead levels in men (1,2), pregnant women (3,4) and particularly in children (5,6,7,8,9), though the evidence for women in general is curiously inconclusive (10,11). The relationship between serum iron and blood lead has genetic elements (12,13).

Iron metabolism: Overview

Iron is an essential micronutrient (14,15,16). The total amounts involved are small; an adult female will have 2-4 grams of iron (around 38mg per kilo) in her body, an adult male up to six (around 50mg per kilo) (17). Males tend to have more due to being larger, not suffering blood loss due to menstruation and some innate differences that begin at puberty (18 p249-251,19). Adult males normally have three times the stored iron of premenopausal females (1000 mg to 300mg seems a widely quoted figure but present author have not sighted the original source), a fact true for vegetarians as well as omnivores (480 mg to 160 mg; the same source problem applies) (20).

The majority of iron in the body is bound in haemoglobin [or hemoglobin (US spelling)] (found in red blood cells [erythrocytes]) where it is used in transportation and processing of oxygen within the body (21,22,23). Up to 10% is used in myoglobin that stores oxygen in the muscles (17,25,24,23). Over 4% is used in lung metabolism (26) playing a vital role in respiration (27). Most of the remainder is stored in the compound ferritin, over two thirds of which is deposited in the liver, the bulk of the remainder being split between bone marrow and reticulo-endothelial cells (17,23,25). Transport of iron within the body is handled by the serum molecule transferrin and at a cellular level by DMT1 [Divalent Metal Transporter 1] (16,17,25). The entire complex system is designed to ensure there is minimal free iron since free iron damages body organs through oxidation due to its highly reactive nature (16, 25).

Smaller trace amounts fulfill key roles within the body with functions such as immune defense (23,28), neural function (29,30,23), DNA synthesis (14,16), cellular energy production (31), liver function (32), apoptosis (33), elastin production (34) and collagen production (35). Iron levels are associated with bone strength and density (36); iron deficiency is linked to stress fractures in female athletes (37).

Iron cannot be systematically excreted from the body and is recycled within the body (23 Fig3,38) predominantly by macrophages of the reticulo-endothelial system. Macrophages of the spleen and liver generally recycle red blood cells before they reach the end of their natural life (120 days) eliminating 1% per day (124). The total iron absorbed from food each day is about 0.06% of total adult body iron (17) although for infants this figure can be multiplied by up to six (25). The main cause of iron loss from the body is blood loss (including significant losses inside the gut (39), particularly for athletes (40 p113,41)). This is the primary determinant of iron status (42,43) though some iron is lost through sweat (peaking within half an hour of heavy sweating) and skin loss (40 p112-114,22). Losses from urine are minimal (about 0.1 mg) (17). For most women menstruation will double to triple iron loss, with losses being slightly higher for adolescents, but it can be even higher (18 p249-251). Diet cannot outweigh heavy blood loss (42,43). Women with heavy menstrual flow should see their doctors as some medication (including the contraceptive pill) can reduce menstrual bleeding.

Figure 1 Diagram of iron movement in adult humans with estimates of iron trafficking derived from Bothwell et al. (1979). The above chart represents iron transfers within the body on a typical day. Note the chart reads from the bottom up. The plasma figure represents the extremely small amount of iron not bound in organic molecules. Hemosiderin is a less useful iron storage molecule than ferritin whose primary purpose seems to be to protect the body from the presence of unbound iron and which accumulates in body organs.

From Beard, John L. Iron Requirements in Adolescent Females J. Nutr. 2000

Iron lead interactions

Iron and lead occupy similar niches within the human body and so compete for likely binding sites particularly during absorption (44,45). While the primary toxicity of lead in the body is due to its ability to mimic calcium it also interferes with the iron metabolism in ways that are fairly well understood (45,46). The displacement of iron by zinc in the haemoglobin, producing zinc protoporphyrin (also a result of iron deficiency)(22,45), is one of the primary consequences of lead toxicity (46 p6). This leads to reduced oxygen supply as iron is the element responsible for most of haemoglobin's oxygen carrying capacity (21) producing hypochromic anemia. Lead also reduces the production of red blood cells (erythropoiesis) (45,46 p6), their size (microcytic anemia) (47) and their longevity (47). It prevents the normal increase of erythopoiesis in response to anemia (45).

These are far from the only effects. Lead's effect on the iron metabolism impacts on functions as diverse as cardiovascular response, neurotransmitter behavior, nerve transmissions, liver detoxification and bone development (46 p7). Lead is neurotoxic killing brain calls directly through apoptosis and interfering with brain function in a variety of ways (45,48,49). Individuals with sickle cell disease may be particularly vulnerable (45). Iron deficiency increases the rate of lead transfer to the brain , at least in rats, since these metals share a common transporter (DMT1) (50). Rat studies also indicate iron may be able to reduce lead induced apoptosis in the brain (51) and reduce lead related disruption during brain development (52).

Iron status: iron deficiency and iron deficiency anemia

Diet, digestion and blood loss (53) are the main factors that reduce iron levels but other factors such as H. Pylori infections (54,38) and genetics (38) also have impacts. Serum ferritin is the traditional way of measuring iron status but more recent tests for such things as total iron binding capacity, serum transferrin saturation, free erythrocyte protoporphyrin, and serum transferrin receptors in conjunction with haemoglobin measurements can more accurately establish the status of iron within the body (40 p100-104,26 p10-18).

Low iron levels (iron deficiency[ID]) affect over 20% of OECD populations (55). If iron levels become low enough iron deficiency anemia [IDA] occurs as the body lacks the iron to form enough new blood cells (17,25,56). While IDA affects less than 3% of the general population (57) it is much higher among some subgroups: pre-menopausal women (55,57,58,59,60), adolescent women (61,62), women who exercise (63,64,65,66), pregnant women (60,67,68), children (55,58,69,70), obese children (71,72) and some ethnic groups (57,59,67,68,69,70,72). Vegetarians (or vegans) in first world countries tend to have lower iron stores but not significantly higher rates of IDA (73,74,75,20). Vegetarian women should note this may be of particular concern during pregnancy (see below). In many third world populations the iron deficiency/anaemia figures can rise much higher (76,77,78,79,80,183). It would be difficult to measure the typical iron level differences between vegetarians and non vegetarians in third world conditions given the high proportion of individuals in these populations with IDA (effectively having no iron stores). It should also be noted that the World Heath Organization has questioned the use of the term iron deficiency anemia in at least one of its publications, since "presence of anaemia in a subject is a statistical rather than a functional concept" and that for an individual "has no immediate physiological meaning" (18 p258-260). Iron deficiency can be easily misdiagnosed because the early symptoms resemble the symptoms of ADD/ADHD (55), a disorder it may be linked to (81.82). In addition high lead levels in and of itself interferes with iron's effectiveness within the body, leading to increased iron deficiency (45,46 p6,83).

Iron deficiency and pregnancy

Among pregnant women iron deficiency can occur even when pre-pregnancy iron levels were adequate (58,84) since iron requirements increase as the pregnancy proceeds (84). Third trimester iron requirements of 5-7.5mg/day (84) cannot be met even from high bioavailability diets (from which under 5mg may be absorbed (84,85)) and must be met from the body's iron stores or supplementation. The average first world woman has approximately 300mg of iron stored; the estimated net requirements of pregnancy are 580mg (84). Danish studies indicate less than 20% of women enter pregnancy with the minimal iron stores required (86) and this figure can only be higher in the third world. However supplementation levels should be set with an awareness that iron absorption increases during pregnancy (84,87,88) and that high iron levels may have detrimental health effects (explained later in this article).

Figure 2: Estimated daily iron requirements during pregnancy in a 55-kg woman. The above chart graphically illustrates the strain of pregnancy on the iron metabolism. It does not take into account possible blood loss during birth which Bothwell estimates as costing 150mg of iron. *From:* Bothwell, Thomas H **Iron requirements in pregnancy and strategies to meet them** Am J Clin Nutr 2000 72: 257S-264

Borderline to moderate maternal IDA has limited impact on fetal iron levels (88,89,90) since the foetus receives most iron via the placenta rather than from maternal iron stores (91). However maternal iron levels may impact on the risk of ID or IDA developing in infancy (92,93,94,95) for reasons that are not clear given that breast milk iron is not directly related to maternal iron levels (96,97,98), except though significant IDA (97,99). Some studies do show a link between ID and iron stores (as opposed to other iron parameters) (100,101,102,95) which may explain this (as iron depletes as the infant grows (103,104)) but the reasons why these results are not universal is not clear (89,90). The fetus's iron status is significantly impacted by maternal hypertension (103), gestational diabetes (103), smoking (103,102), consuming alcohol (105), severe IDA (103) and premature delivery (103) and low birth weight (103,84). Provided a

neonate (newborn) is neither underweight, premature or otherwise iron deficient it should have sufficient iron stores (around 75 mg per kilo) to maintain iron levels until six months of age with breastfeeding but after that point iron depletes rapidly (103,104,18 p247). Note that with infants early introduction of complementary foods (before 6 months) or prolonging heavy breast feeding (>6 times per day beyond 6 months) are negatively associated with iron status (106,107,104).

Females planning pregnancy should seek to maintain robust iron levels since supplementation after pregnancy is discovered largely misses the first trimester when ID has significant impact, effecting fetal weight and risk of problems in later trimesters (94,108,59), possibly due to the impact on the development of placenta (109). Iron stores should be increased prior to pregnancy as iron absorption may fall in the first trimester (84) and significant stores reduce dependence on supplementation (which some find difficult to maintain due to side effects (110,111)). Significant iron depletion can occur during birth (19 Fig3) though the actual depletion from breast feeding is less than from menstruation (84). Mothers are frequently iron depleted after giving birth (108,95).

Iron deficiency and lead levels

There seems little doubt that rectifying severe iron deficiency significantly impacts blood lead levels (7,45,112,113,114,3). In pregnant women dietary iron intake has more of an impact on newborn blood lead than that of any other micronutrient; the impact is double that of calcium (3). It also worth noting that research indicates that low maternal iron levels increase the risk of schizophrenia in offspring by up to four times (115) while high lead levels can roughly double the same risk (116). How these two risk factors interact with each other is not yet known. With children correcting iron (or zinc) deficiency may, though not necessarily will, lead to the cessation of pica (the compulsive consumption of non-food items such as paint and clay) which can be a source of lead contamination (117).

On the other hand the evidence for supplementation where iron intake is adequate is poor (118,119); for example, a recent large double blind study indicates no impact on blood lead levels from iron (or zinc) supplementation (120). The same may be true of low lead levels with or without iron deficiency (121,122). There might still be advantages to iron supplementation for individuals whose environments remain lead contaminated and whose primary exposure is through ingestion (45,119). A recent study of rats' brains found that low dose iron supplementation had more effect on lead damage than high dose iron supplementation (51).

Iron regulation within the body

The body regulates the intake of iron, so iron absorption falls as iron levels rise (17), due to the influence of the hormone hepcidin (25,123,124). The more hepcidin is produced by liver cells the less iron will be absorbed (25,123,124,38).

An individual who is suffering IDA may absorb up to fifteen times more iron than an individual with high iron levels (149) partially due to increases in DMT1 inside the duodenum (large intestine) (45). Unfortunately if iron is not present in sufficient quantities the DMT 1 molecules will instead transport other metals such as lead, increasing lead absorption up to 7 fold (45).

Hepcidin production may be stimulated by disease related inflammation (123) or exercise that impacts the joints (125,126) though research in the field is in its early stages (the hormone was only discovered in 2000 (38) and it's regulation of iron metabolism was widely recognized in 2004).

The inability to regulate iron intake (Hemochromatosis) is a generally heritable defect that is found in European and particularly Slavic populations which tends to lead to iron toxicity (and consequent organ failure) in later life (127,128,129,38). Similar defects can be present in people of African (AIO or siderosis (127)) or Solomon Islander descent (53), and there may be others yet to be discovered (128).

Impacts of iron deficiency

Low iron levels by themselves produce cognitive decline (130) especially among young children (131,132,133), exacerbating lead's impact. For example iron deficiency impacts on depression level following pregnancy (134) and interferes with the ability of the mother to interact with the child (135,136). At the same time ID in the child impairs walking which weakens the maternal bond and reduces cognitive stimulus at a key stage of development (137,138,139). The fact that a child with IDA has a muted facial (140) and auditory recognition (141) (including the mother's face and voice) combined with poorer object recall (142) and a more uneven temperament (133,139,142) is unlikely to be helpful to this crucial bond. All this may have significance since it has been suggested that an enriched environment may mitigate the impact of lead on cognitive development (143). In rectifying iron deficiency in children, verbal and motor skills are likely to improve independently of any lead impacts (118,140,144) though correction in latter childhood cannot totally repair early iron deficiency (145,133,30).

Iron and diet

Iron levels can be modified by diet (146,147,148) though the role of individual nutrients should not be overstated (149) and removal of iron inhibitors may be more important than supplementation aimed at increasing iron absorption. For LEAD Action News Volume 9 Number 3

June 2009

Page 5 of 32

example phosphorus and phytates may have twice the inhibitory effect than Vitamin C has at enhancing iron absorption (150). It would not be wise to begin vitamin C enhancement without first looking at phosphorus and phytate levels in the diet if your aim is to increase iron levels.

It is worth noting phosphorus is a micronutrient that is as important as iron, though one that is oversupplied in most western diets (151). It is important to remember that many of the compounds that inhibit iron absorption are themselves either essential or helpful nutrients, so the emphasis should be on balancing and offsetting impacts or separating consumption by at least two hours rather than on eliminating items.

Also keep in mind that since only a minute fraction of the body's total iron is absorbed per day (approximately 0.2 (212) -5 mg (84,85) of 2-5g in the normal adult body counterbalanced by losses of 0.8-3mg (18 p249-251)) rapid changes in iron status should not be expected (147,148,75). Individuals who are iron deficient should be aware that as iron levels rise measurable storage levels (serum ferritin) may even initially fall as iron storage is not the body's highest priority (152).

Iron absorption enhancers: Meat consumption & vegetarian diets

In terms of iron enhancement one of the easiest methods is increasing meat in the diet. A significant quantity of the iron in meat is haeme [or heme (US spelling)]. Between 15-40% of haeme iron in the diet is absorbed compared with 1-15% of non-haeme iron (75). Haeme iron is absorbed in a completely different manner than non-haeme iron and is not susceptible to most factors that inhibit or enhance non-heme iron absorption (153). The mechanism of haeme iron absorption is still poorly understood (153). Not only is haeme more easily absorbed than non-haeme iron but meat proteins (more accurately the amino acids that make them up (154,155,156)) enhance iron (and zinc) absorption even if the iron is non-haeme (157,158). While of secondary significance to adults (159) this can be especially useful for weaning infants (160) given the tight balance between iron absorption and loss (104,18 p247). Meat's importance is best demonstrated by the fact that premenopausal female omnivores can absorb six times as much iron as similar vegetarians (75). Cooked beef contains more haeme iron (65% of iron content) than cooked pork (39%) and poultry or fish (26%) (161). Haeme iron absorption seems little influenced by rising or falling iron stores (162,153) though there appears to be a limit on how much can be absorbed at a given time (158) and overall dietary haeme absorption still seems linked to iron status (163).

For vegetarians or vegans a good supplementation technique is through cooking acidic vegetables (such as tomatoes or cabbage) in non enameled cast iron pots which has been consistently shown to significantly increase dietary iron (165 p60,166,167); a technique that works equally well for non-vegetarians and which may be preferable to iron supplementation in pill form. For this purpose it should be noted that materials do not have to be naturally high in iron to improve iron status (168). Should there be difficulty in finding non-enameled cast iron cookware Lodge Cast Iron Cookware of Tennessee proves a range that is widely distributed. Note that the iron in many vegetables is more bioavailable (capable of being absorbed) when cooked rather than raw (341).

Iron cooking vessels: The following items have their iron content more than doubled when cooked in iron container without a protective surface. *Rear Row:* red cabbage, tomato, rice, corn meal *Front Row:* tomatoes, capsicum (bell or banana peppers in USA), pureed vegetables, wild rice, apple sauce, scrambled egg, corn meal, *Foreground:* scrambled egg *Not pictured:* milk

Vegetarians should note non haeme iron absorption can be compromised if stomach acidity is impaired (for instance by the use of antacids), since absorption of non-haeme iron in the gut requires the transformation and maintenance of iron in ferrous (Fe²⁺) form (169 p154,170). If the stomach is insufficiently acidic the iron will not convert from ferric (Fe³⁺) to ferrous form (Fe²⁺) inside the duodenum (large intestine) and is unlikely to be absorbed (171). Furthermore the primary molecular iron transporter, DMT1, which is critical to this process operates effectively only at low (acidic) pH (172 p524,38). It is worth noting stomach acidity reduces with age (173) and that reduced stomach acidity can be a consequence of Helicobacter Pylori infection (174).

Iron absorption enhancers: Vitamin C and other food acids

Vitamin C (ascorbic acid) clearly enhances non-haeme iron absorption (165 p11,175,176), though its impact should not be overstated (149). The extreme increases shown in single meal experiments (some higher than 200%) (177,178,179,165 p11) are far more modest in whole diet studies (150,159,175,180) and not supported by studies of the iron stores of individuals who consume vitamin C supplements (150,176,180). As with most other enhancers and inhibitors it will only impact if consumed with food it can mix with in the stomach; Vitamin C taken four hours before a meal has no impact (177). There is no increase in effect once 100mg of ascorbic acid has been ingested (165 p12). The primary impact of vitamin C is to accentuate the creation and maintenance of soluble, absorbable iron compounds in the gut (171); the primary determinant of whether this available iron is absorbed is still iron status and hepcidin levels (149,179,38). The increased iron availability created by vitamin C is still dependant, to a lesser extent (171), on stomach acidity (181). Vitamin C may also enhance iron's capacity to displace lead during food absorption (182). Ascorbic acid is found in a wide range of vegetables as well as fruit but cooking destroys up to 75% (183,342). While oranges are a good source of vitamin C many fruits are far richer including guava, kiwi and black currant (342,343).

Vitamin C: 240 g of the foods (pictured above) should provide sufficient Vitamin C to optimize iron absorption (up to 960 g if cooked, for juice equivalent check labels). Top row: watercress, kohlrabi [kohl rabi, german turnip] (leaves), silver beet (spinach in Australia), popcorn. Middle Row: kohlrabi (bulbs), grapefruit, orange, lemon, cauliflower Bottom row: papaya [paw paw in Australia], strawberries, lime, dill, kaffir lime [K-lime, makrud lime]. Not pictured: Lychee

The fact that non-citric fruit (184) or vitamin C supplementation alone (150,180) does not necessarily enhance iron status indicates that vitamin C does not operate in isolation. It is worth noting citric acid can enhance iron absorption and may have a complementary role (175). However apple juice is almost as effective at enhancing iron absorption as orange juice possibly due to it's malic acid content (185). Food acids that have shown iron absorption enhancement include citric (found in oranges, grapefruit, lemon and limes), malic (apples ,grapes and wines), tartaric (grapes, bananas, tamarinds and wines) and lactic (yoghurt, sauerkraut and fermented pickled] vegetables), but studies contain inconsistencies that make predictions on their overall effects unreliable (175,186).

Vitamin C: 120 g of the foods (pictured above) should provide sufficient Vitamin C to optimize iron absorption (up to 480g if cooked, for juice equivalent check labels). Top row: parsley, guava (juice pictured), blackcurrant (juice pictured), kale Middle Row: radish, capsicum (bell pepper in US), kiwi fruits, broccoli Bottom row: feijoa, baby capsicums, brussel sprouts, guava, horse radish Not pictured: Mustard greens, red peppers, thyme

Iron absorption enhancers: Vitamin A, carotenoids and oily fish

Food Acids: These come in a variety of forms and many foods contain more than one type. Lactic acid: One of the more consistent iron enhancers. Yogurt (far left) and pickled vegetables (including sauerkraut with pictured can) are the most common sources. Tartaric Acid: Grapes, bananas, wine pictured. Malic acid: Grapes, apples, wine pictured. Citric acid: Pictured in our Vitamin C photos on the previous page are oranges, grapefruit, lemon and lime all of which are rich in citric acid

Until recently it was believed that Vitamin A enhanced iron absorption (165 p28) but new research indicates that vitamin A enhances the body's ability to transfer iron out of storage and its ability to construct haemoglobin from iron (187,188). It may limit the impact of iron inhibitors by preventing them binding to iron (189) though more recent research implicates the related carotenoids, including beta-caratone, which provide the colour compounds in most vegetables that are not light green (190,191,192). Fish oil (and/or carbohydrates) enhances iron absorption where certain significant inhibitors are present (193,194); whether it does so when such inhibitors are not present in significant quantities is another issue (195).

Alcohol: the ultimate special case

Alcohol reverses the effect of genes governing the hormone hepcidin (decreasing hepcidin production even as iron consumption and stores rise) leading to much higher absorption (196,197,323) but loss of the ability to regulate iron is a high price to pay for reasons outlined later. Two standard drinks a day (the current Australian recommendation for safe alcohol) is sufficient to impact iron levels reducing the risk of iron deficiency; more than this increases the risk of high iron levels (198). The polyphenols in red wine may have a slight negative impact on this (199). In Africa significant consumption of low alcohol, high iron beer has been a major factor in the prevalence of high iron levels, though it has also protected some groups of women from iron deficiency (200,201). It is important to note that in spite of high iron levels individuals who consume significant amounts of alcohol are up to five times more likely to have severely elevated blood lead (11,10,1,202) and, in the case of pregnant women, are more likely to transfer lead to the fetus (203). Significant alcohol consumption during pregnancy increases the infant's chance of developing ID or IDA (105).

General iron absorption inhibitors: Calcium

Calcium can reduce iron absorption by 50-60% (204,165 p15) but the experimental data contains inconsistencies and its impact on a whole diet is difficult to assess (205,159,164). It is the only inhibitor that affects both haem and non haem iron (206,164). Its impact is dose dependant (18 p254); a single slice of cheese (128 mg) has no impact on iron bioavailability in a hamburger (206). Maximal impact requires 300-600mg with higher amounts having no significant additional impact (18 p254). One of the highest iron absorption rates is from human milk though the often quoted 49% being absorbed by the child is optimistic; it is more likely to be under half that (compared to under 10% for cows milk) (207). Cow's milk can compromise a child's iron status in part by accentuating intestinal bleeding (208) and by reducing iron consumption (107). Significant quantities of cow's milk should not be given to children under 12 months of age (208,107).

Iron absorption inhibitors: Non-haem iron

The following comments on inhibitors apply only to non-haem iron.

Calcium & soy: The pictured quantity of milk or cheese would minimize iron absorption, half that would have little impact. For milk products (like yogurt) check label (impacts at >300ml with impact rapidly accelerating). Unfermented soy products (beans, milk and meat substitutes) inhibit iron absorption but are high in iron.

Soy proteins inhibit iron absorption (158,209,210) but it should be noted that this may be counterbalanced by the fact that soy is very high in iron (211). Fermented soy products can actually enhance iron absorption (212,213) but may not do so in all cases (195). Products containing calcium or soy also tend to be high in phosphorus (151) or its compounds (as are chicken, nuts, legumes [beans, lentils etc], soft drinks, meat and fish) (151) which may inhibit absorption (150).

Of these phosphorus compounds phytic acid [phytate in salt form] (found abundantly in whole grains, bran, nuts and seeds (165 p61,214 p42)) is the most significant reducing iron absorption by as much as 90% (215,216) due to the formation of insoluble (and therefore indigestible) iron compounds in the gut (214 p41). Even small quantities significantly inhibit iron absorption (217). However this inhibitory effect is significantly reduced by the presence of ascorbic acid, with vitamin C's impact being proportional to the phytate content (165 p11). Baking involving yeast (most bread making) greatly reduces the presence of phytates (217,218).

Phytates: The most powerful iron inhibitors (pictured above). Least inhibitory when baked with yeast (*right rear:* wholegrain bread) and should always be consumed with vitamin C (*left rear:* apple & blackcurrant juice). *Middle row:* baked beans, beans (black turtle, black eye, lima, white, barlotti), bran, peanuts *Front row:* sunflower & sesame seeds, peas, beans, nuts (almond, brazil, cashew), muesli

Tannins (polyphenols found in tea) can reduce absorption by up to 90% (219,186) (generally closer to two thirds(220,219)) but dissipate rapidly while other polyphenols found in coffee have roughly half the effect but are longer lasting (220). The impact of polyphenols (including tannin) can be considerable (221,222,176) but should not be overstated (223,224). They do not seem to have significant effects on individuals not otherwise iron deficient (223,224) possibly due to the presence of carotenoids and vitamin C in most diets which can negate the impact of the polyphenols (189,190,191,225) though rat studies also suggest the composition of saliva may be modified by regular tannin consumption (226). Some nuts, sorghum, chocolate, red wine and legumes contain significant polyphenols (227). The author has yet to see clear evidence that caffeine has any significant effect on iron status in humans in spite of this rumour having wide currency on the web.

Polyphenols: The items pictured at left contain polyphenols that may inhibit iron absorption. Note the considerable overlap with phytates. Left to Right Nuts (almond, brazil, cashew) beans (black turtle, black eye, lima, white, barlotti), coffee, tea, wine, beans, peas, chocolate, nuts (peanuts) lentils, peanut butter, baked beans.

Carotenoids & Vitamin C: The items (pictured at left) are high in both of these nutrients and should optimize iron absorption when polyphenols are present: Left to right: kale (in pot), thyme, banana capsicum (banana pepper in USA), capsicum (bell peppers in USA), red pepper, guava, broccoli, feijoa, kiwi fruit.

General Note: Not all polyphenols inhibit iron absorption and there insufficient evidence to know exactly how effectively individual food items that contain carotenoids can offset those that do.

Carotenoids – Some of the carotenoids found in the items pictured above may be able to counteract the inhibitory impact of polyphenols in coffee & tea. *Top row* Silver beet (spinach in Australia), yellow Indian corn, endives, lettuce, ruby red grapefruit juice, basil. *Middle row* Squash, red cabbage, broccoli, watermelon, pink grapefruit, cabbage, pumpkin. *Lower row* bananas, asparagus, carrots, tomatoes, red onions, red peppers, feijoa, guavas, apples, red peppers, beans, peas, banana capsicum (banana peppers in USA), avocado. *Not pictured* Pimentos, pepper grass, parsley, kiwi fruit.

Oxalic acid is one of the more widely mentioned inhibitors, though available research is very limited. It is found in variable quantities in dark green leafy vegetables (notably spinach), cocoa, chocolate, nuts, berries and beans (228,229). It can be found in large quantities in some non-western diets (230). While several studies have shown a variable degree of inhibition (186,231) a recent study showed none (232). From what little research on humans is readily available the overall impact on a western diet is unlikely to be significant. However, spinach, while containing significant iron (and vitamin C), remains a poor source of bioavailable iron as not only does it contain oxalates but also calcium, polyphenols and phytic acid (186,231). Some studies have placed iron absorption from spinach as low as 1.4% (186).

Eggs: Products that contain egg whites (such as pavlova centre rear) severely inhibit iron absorption and should be replaced with products such as papaya and egg yolk pudding (as vitamin C will enhance iron absorption from the egg). Simple ceramic egg separators are readily available. Traditional Italian gelato (not all gelato) may use egg yolks (right bowl) or less frequently egg whites (left bowl).

Egg whites (egg albumin) can inhibit iron absorption by almost 80% (233 table 2). The overall effect is about -27% per egg (234) and has been used as a standard experimental control due to to the predictable consistency of the result (209,210). Regular consumption can have a noticeable effect on iron levels (183). Egg yokes do not significantly inhibit iron absorption in humans and are a good complementary food for infants provided potential egg allergies are taken into account (231,232).

Metallic micronutrients: complex interactions

The issue of metallic micronutrients is complex. Copper is a classical example. Copper deficiency inhibits iron absorption in rats (237) and may prevent iron supplementation from being effective since copper plays a key role in iron absorption and transfer within the body (238,239,38,14). The problem is iron itself can interfere with copper absorption (240,165 p6). Indeed significant copper deficiency is extremely rare with healthy individuals on western diets except through zinc and, to a lesser extent, iron and/or vitamin C supplementation (239,241,242,243) and simply increasing copper intake may not counteract the effect of supplementation (242,243). High iron intake can even have different effects on copper levels in the foetus and mother (244). Copper levels (and selenium levels) also fall if an individual is iron deficient (245).

Zinc can inhibit iron absorption (and, to a lesser extent, visa-versa) (240,246,247,248,249,159 p5) but appears to be dose and ratio dependant (249). With rats and humans there is little effect if the iron/zinc ratio is around 2/1(249,250) and significant doses are required for there to be impact (251). Iron supplementation should have minimal impact on zinc levels (252,246,253) though an impact is possible (254,274). Zinc and iron have an even more complicated relationship where their effects on physiological outcomes (e.g. anaemia) are concerned (253,246,247,280). Iron and zinc compete primarily for absorption in the gut (247,255); separating the consumption of iron or zinc supplements by several hours (256,257,252) or consuming iron supplements on other than a daily basis (274) should minimize problems. Zinc's consistently demonstrated impact on copper levels is probably more significant (239,240,241,243,165 p7). Manganese severely impacts iron absorption (258) and its absorption is hindered by high iron stores (259).

Iron absorption and the dominant role of inhibitors

It is worth noting that the total impact of inhibitors may negate efforts at reasonable iron supplementation or fortification (260); several countries have populations whose iron absorption rates are between 2-4% (216,261). High iron bioavailability diets that minimize iron inhibitors and maximize iron enhancers significantly increase iron absorption (by a factor of 6 or more, see chart opposite) in individuals with low iron stores, though it should be noted that studies where individuals select their own food consistently return poorer outcomes than those where meals were selected by experimenters (85). Note from the accompanying chart that male omnivores (normally having three times the iron stores of women omnivores) absorb half as much as females in spite of having higher iron intakes and

probably do not consistently meet their daily iron requirements even on a high bioavailability diets. For individuals on high bioavailability diets absorption decreases over time while on low bioavailability diets (which provide under 40% of daily requirements) absorption increases. The body's ability to regulate iron absorption is clearly demonstrated but so is the massive impact of inhibitors.

From: Hunt, Janet R High-, but not low-bioavailability diets enable substantial control of women's iron absorption in relation to body iron stores, with minimal adaptation within several weeks Am J Clin Nutr 2003 78: 1168-1177

Women [left 4 columns] in the present study who were treated with the same maintenance (12 wk) and test (2 d) diets tended to have adaptations in a similar but much less pronounced pattern as was seen in the men [right 4 columns] in a companion study (11). The men, with their higher iron stores, absorbed considerably less nonheme iron (clear column) than did the women, and similar amounts of heme iron (black column), even though the men's greater energy requirements resulted in proportionately greater iron intake (13 mg total iron for women, 15–16 mg for men). The figures above each bar designate total iron absorbed (mg/d). For these data, 9 women and 14 men were tested with the high-bioavailability diet, and 7 women and 17 men were tested with the low-bioavailability diet

Iron supplementation: cautions and limitations

Iron supplementation either directly by pill or multi-vitamin, or the taking of iron enhances (such as Vitamin C) should be handled with extreme care; particularly with children (19,262). Infants are unable to down regulate their iron absorption in the same manner as adults (263). Supplementation of infants (with iron drops or fortified formula; normal adult supplements must never be used) should only be undertaken where iron deficiency has been clearly established since supplementing iron sufficient infants can have severe short term and long term consequences (262,264,265,266,106). For infants gains may be fleeting (267) though this must be set against the crucial nature of this period for brain development (29,30,142).

When individuals are not iron deficient higher iron intake may not translate into higher iron stores (268,269). Where iron stores do rise the range of iron indicators affected may not be as wide with iron supplements as with food supplementation (270). Where supplements are taken low dosages may be almost as effective as high doses (51,88,133,271,272,273,274) and may even produce superior long term results with less risk (25 p529S,264, 265,266,273). Nor should it be assumed that providing a wider range of vitamin supplements will automatically improve outcomes (275,94). Some individuals find daily iron supplements produce significant side effects (mostly gastrointestinal) (110,111,276,277,282). While iron supplements can offer a more rapid improvement in immediate iron levels their effect may not be as long lasting (147) and continuing use has significant negative risks.

Iron supplementation: dangers

As the body does not excrete iron the cumulative build up from supplementation can be dangerous; a continuous load exceeding 1-2 mg/day can results in iron overload (278). In addition the interactions between micronutrients can be complex; iron supplementation can interfere with zinc absorption impacting on the immune system (254). This is of concern given that mild iron deficiency may reduce the risk of acute illness in areas where certain infectious diseases are prevalent (279,280,281). Even a non-toxic iron enhancer such as Vitamin C (for which a UK expert panel declined to set a recommended maximum intake (282)) can have deleterious impacts once other micronutrient impacts are taken into account: at least one case of serious copper deficiency has been reported in association with vitamin C (283). With Vitamin C it is instructive to compare Roth's list of impacts (283) (which include possible indirect effects) with those from the fact sheets of the Pauling institute (284) and the Feinberg School of Medicine(285) (which do not). To quote from a review of US military observations "Single-nutrient supplementation ... should be implemented only after nutritional counseling and diet modification." (276)

Iron supplementation: daily or weekly/bi-weekly

Studies of pregnant women indicate that weekly iron supplementation is preferable to daily supplementation (286,287,288) supporting studies that show the ability to absorb non-haem iron from food may decline after daily supplementation (289,290). Supplementation should work best with individuals who consume significant haem iron since it is unaffected by this decline (289). Daily supplementation may still be preferable for children or individuals who are severely iron depleted since most studies show daily supplementation reduces anaemia at a faster rate (291,292,293,344,84). Many studies show minimally different results between daily and weekly supplementation (294,295) so, unless significant anaemia is an issue, the choice between them is generally determined by other criterion. For instance intermittent provision of iron supplements may address the problem of infectious and parasitic diseases noted above (296) and promote better absorption of elements that compete with iron (276). Equally important to the individual is the radical reduction in the risk of side effects (whose extent, prevalence and threshold dose is widely disputed but do occur) (297,294). For pregnant women who are not anaemic daily supplementation at other than low dosages can increase the risks of premature birth or low weight birth (298).

High iron levels: risk and damage

It is worth remembering that iron is in itself a neurotoxin and that in the USA is the largest cause of fatal accidental poisonings in children under 6 (14). High levels of iron can result from genetic factors, dietary overload, increased dietary absorption, sideroblastic anemia and even iron absorption through the lungs in the case of metal workers (53). High iron levels are not limited to individuals with genetic abnormalities and vary quite widely between ethnic and racial groups (299,129).

High iron levels provide ideal conditions for certain infections (300,301,302) notably malaria (303,280,281) and tuberculosis (300,301). High levels of iron doubles the risk of diabetes (304,305,306) as well as increasing the risk of complications from this disease (306). High iron may increase the risk of cardiovascular problems (307) though current evidence indicates a marginal influence (308,309) except when associated with other factors such as alcohol (310). There is an increased risk of ischemic stroke in postmenopausal women (311).

Having both high iron and high Very Low Density Lipoprotein (VLDL) cholesterol levels appears to double your risk of cancer (312) (excluding breast cancer (313,312)) and triples your risk of Alzheimer's disease (314). For males there appears little cancer risk from high iron alone but there may be some for females (315). Other co-factors that may increase the cancer risks of high iron levels include vitamin C (lung cancer (316)) and alcohol (colon (317) and breast cancer (318)) though it must be emphasized research into links between cancer and iron are ongoing (319). Haem and non-haem iron can also have differing impacts but current research contains significant contradictions; two significant lung cancer studies showed conflicting results (320,321,316). Zinc ameliorates some of these impacts (320,317,316) but bear in mind its impact both on iron and copper levels. Haem iron is associated with colon cancer but chlorophyll (from green leafy vegetables) seems to ameliorate the risk (161); Mormons who eat meat do not have higher rates of colorectal cancer than vegetarian 7th day Adventists (322).

High iron levels impact on the liver and, in conjunction with other factors, can lead to liver failure (323). Haem iron is also associated with gallstone disease (324). Vitamin C could potentially enhance oxidative damage caused by high iron levels (325).

Iron overload may be more of a problem with older individuals than iron deficiency (326,327) and its overall prevalence may be increasing in some western countries (328). Even during pregnancy it is possible to absorb too much iron (329). High levels of iron during pregnancy are associated with gestational diabetes mellitus particularly if combined with obesity (the combination may triple the risk) (330). When considering iron supplementation during pregnancy one should be aware the birth weight of infants can be adversely affected by high maternal iron levels (331,332,298,126) and the effect of iron on other micronutrients (333). It must be emphasized however that for most individuals the risks of high iron during pregnancy are considerably less than those of low iron (59,84,108); the argument for considering supplementation is strong (86,94,288,334,335).

High iron: risk or possibility

Also remember that the body is fairly efficient at preventing high iron levels: the Lexington medical center in North Carolina finds that there are five individuals with low iron for every one with high iron (53). The average male stores the equivalent of over one and a half years food intake so significant intakes over prolonged periods are required for problems to occur. Even with haemochromatosis significant organ damage does not normally occur until an individual is in their forty's (25) – without supplementation over forty years food intake is required. In fact only a minority of individuals (28% of men and just 1.2% of women under the age of eighty) with the most common haemochromatosis genetic defect will actually experience significant overload related disease (128).

"Iron deficiency is not a diagnosis"

Seek medical or qualified nutritional advice before treating yourself for abnormal iron levels and remember iron levels may be the result of other medical conditions (152) such as H. Pylori infection (174), hookworm infestation (336,337), drug intake (most frequently aspirin (338,339)) or genetic abnormalities (38). The fact that the gut is both the site of absorption and of predominant loss makes its health a primary factor. In the UK 41% of IDA is attributable to six medical conditions rather than diet or non-disease related blood loss (339). For males in particular IDA may be an early sign of cancer (340). To quote from a slide presentation from Saint Vincent's Hospital Sydney "Iron deficiency is not a diagnosis." (25) An inadequately balanced diet may be.

Iron Nutrition and Lead Toxicity - Citations

By Robert Taylor, The LEAD Group Incorporated, June 2009

Notes on Sources (For a guide to source content see end of document):

For reasons of both availability and reader access this article draws predominantly on free to view articles or the better abstracts of pay for view articles. It must be emphasized that the author is a layman. With no medical or biochemical background this article is limited by my lack of familiarity with some of the more technical aspects.

- 1. Relation of Nutrition to Bone Lead and Blood Lead Levels in Middle-aged to Elderly Men: The Normative Aging Study Yawen Cheng, Walter C. Willett, Joel Schwartz, David Sparrow, S Weiss, and H Hu http://aje.oxfordjournals.org/cgi/content/abstract/147/12/1162
- 2. **Blood lead and serum iron levels in non-occupationally exposed males and females** A. A. E. Wibowo, P. Del Castilho, R.F.M. Herber and R.L. Zielhuis *Int Arch Occup Environ Hlth 39, 113-120 (1977)* www.springerlink.com/content/i1022761666u2282/
- 3. Maternal blood lead concentration, diet during pregnancy, and anthropometry predict neonatal blood lead in a socioeconomically disadvantaged population Lawrence M. Schell *Environmental Health Perspectives Volume111,Number 2*, Feb 2003 www.ehponline.org/members/2003/5592/5592.pdf
- 4. **Determinants of Elevated Blood Lead during Pregnancy in a Population Surrounding a Lead Smelter in Kosovo, Yugoslavia** Joseph H. Graziano, Dusan Popovac, Pam Factor-Litvak, Patrick Shrout, J Kline, M J. Murphy, Y-H Zhao, A Mehmeti, X Ahmedi, B Rajovic, Z Zvicer, DU Nenezic, NJ Lolacono, and Z Stein *EHP Vol. 89, pp. 95-100, 1990* www.pubmedcentral.nih.gov/picrender.fcgi?artid=1567790&blobtype=pdf
- 5. **Relationships among Blood Lead Levels, Iron Deficiency, and Cognitive Development in Two-Year-Old Children** Holly A. Ruff, Morri E. Markowitz, Polly E. Bijur, and J F Rosen *E H P 104:180-185 (1996)* www.ehponline.org/members/1996/104-2/ruff.html
- 6. **Iron Deficiency Associated with Higher Blood Lead in Children Living in Contaminated Environments** Asa Bradman, Brenda Eskenazi, P Sutton, M Athanasoulis, and L R Goldman *E H P Volume 109 Number 10 October 2001* www.ehponline.org/members/2001/109p1079-1084bradman/EHP109p1079PDF.PDF
- 7. **Association between blood lead concentrations and body iron status in children** J W Choi, S K Kim *Archives of Disease in Childhood.* 2003;88;791-792 http://adc.bmj.com/cgi/reprint/88/9/791
- 8. Association between iron deficiency and blood lead level in a longitudinal analysis of children followed in an urban primary care clinic. Wright RO, Tsaih SW, Schwartz J, Wright RJ, Hu H. *J Pediatr 142(1):9–14 2003*. www.ncbi.nlm.nih.gov/pubmed/12520247
- 9. Interaction Between Anemia and Blood Levels of Iron, Zinc, Copper, Cadmium and Lead in Children Turgut, Sebahat: Polat A; Inan M; Gulten E; Bican M; Karakus TY and Genc O *Indian Journal of Pediatrics, Volume 74 -Sep 2007* http://medind.nic.in/icb/t07/i9/icbt07i9p827.pdf
- 10. Correlates of Bone and Blood Lead Levels among Middle-aged and Elderly Women Susan A. Korrick, Joel Schwartz, Shirng-Wern Tsaih, David J. Hunter, Antonio Aro, Bernard Rosner, FE Speizer, and H Hu American Journal of Epidemiology Vol. 156, No. 4 http://aje.oxfordjournals.org/cgi/reprint/156/4/335

- 11. **Determinants of the Blood Lead Level of US Women of Reproductive Age** Lee, Mi-Gyung Chun, Ock Kyoung Sung, Wan O. *Journal of the American College of Nutrition* www.jacn.org/cgi/reprint/24/1/1
- 12. **Variants in Iron Metabolism Genes Predict Higher Blood Lead Levels in Young Children** Marianne R. Hopkins, Adrienne S. Ettinger, Mauricio Hernández-Avila, Joel Schwartz, Martha María Téllez-Rojo, Héctor Lamadrid-Figueroa, D Bellinger, H Hu, and RO Wright *E H P VOLUME 116 | NUMBER 9 | September 2008* www.ehponline.org/members/2008/11233/11233.pdf
- 13. **Association between Hemochromatosis Genotype and Lead Exposure among Elderly Men: The Normative Aging Study** Robert O. Wright, Edwin K. Silverman, Joel Schwartz, Shring-Wern Tsaih, J Senter, D Sparrow, ST Weiss, A Aro, and H Hu *E H P 112:746–750 (2004)* www.ehponline.org/members/2004/6581/6581.pdf
- 14. **Iron** Jane Higdon *Micronutrient Information Center, Linus Pauling Institute, Oregon State University* http://lpi.oregonstate.edu/infocenter/minerals/iron/
 - 15. Iron (Fe) Enerex www.enerex.ca/products/essential nutrients/essential book iron.htm
 - 16. Human iron metabolism Wikipedia http://en.wikipedia.org/wiki/Human iron metabolism
- 17. **Trace or Micro Minerals NHM 362: Iron** *College of Human Environmental Sciences University of Alabama* www.ches.ua.edu/departments/nhm/faculty/neggers/nhm362/Iron 362.pdf
- 18. <u>VITAMIN AND MINERAL REQUIREMENTS IN HUMAN NUTRITION (second edition)</u>: 13. Iron World Health Organization/UN Food and Agriculture Organization http://whqlibdoc.who.int/publications/2004/9241546123 chap13.pdf
- 19. **Iron Requirements in Adolescent Females** John L. Beard *Journal of Nutrition*. 2000;130:440S-442S http://jn.nutrition.org/cgi/content/full/130/2/440S
- 20. The iron balancing act: vegetarians may have the edge *Loma Linda University* www.llu.edu/llu/vegetarian/iron.html
 - 21. Hemoglobin Wikipedia http://en.wikipedia.org/wiki/Hemoglobin
- 22. The Interaction of Iron and Erythropoietin Brigham's and Women's Hospital Harvard Education http://sickle.bwh.harvard.edu/iron_epo.html
- 23. Iron Biology in Immune Function, Muscle Metabolism and Neuronal Functioning John L. Beard *The Journal of Nutrition 131* (2): 568S. (2001) http://jn.nutrition.org/cgi/reprint/131/2/568S
 - 24. Myoglobin Wikipedia http://en.wikipedia.org/wiki/Myoglobin
- 25. **Iron Metabolism and Storage** Graham Jones *Sydney Pathology St Vincent's Hospital Sydney* www.sydpath.stvincents.com.au/other/Presentations/IronLectureOn-Line.PPT
- 26. Recommendations to Prevent and Control Iron Deficiency in the United States Ray Yip, Ibrahim Parvanta, Mary E. Cogswell, Sharon M. McDonnell, BA Bowman, LM Grummer-Strawn and FL Trowbridge *CDC Morbidity and Mortality Weekly April 3, 1998 / Vol. 47 / No. RR-3* ftp://ftp.cdc.gov/pub/Publications/mmwr/rr/rr4703.pdf
- 27. **Iron metabolism in the lower respiratory tract** Fernando Mateos, Jeremy H Brock, José Luis Pérez-Arellano *Thorax 1998;53;594-600* http://thorax.bmj.com/cgi/reprint/53/7/594
- 28. **Nutrients and their role in host resistance to infection** Catherine J. Field, Ian R. Johnson, and Patricia D. Schley *Journal of Leukocyte Biology Volume 71, January 2002* <u>www.jleukbio.org/cgi/reprint/71/1/16</u>
- 29. **Role of red meat in the diet for children and adolescents** Geoffrey Cleghorn *The Free Library by Farlex* www.thefreelibrary.com/role+of+red+meat
- 30. Recent Evidence from Human and Animal Studies Regarding Iron Status and Infant Development John Beard J. Nutr. 137:524S-530S, February 2007 http://jn.nutrition.org/cgi/reprint/137/2/524S
 - 31. Cytochrome c Research Colabratory for Structural Bioinformatics *Protein Data Base*
- 32. **The Molecular Perspective: Cytochrome P450** David S.Goodsell *The Oncologist 2001;6;205-206* http://theoncologist.alphamedpress.org/cgi/reprint/6/2/205
- 33. **The Molecular Perspective: Cytochrome c and Apoptosis** David S. Goodsell *The Oncologist, Vol. 9, No. 2, 226–227, April 2004* http://theoncologist.alphamedpress.org/cgi/reprint/9/2/226
- 34. **Fluctuations of Intracellular Iron Modulate Elastin Production** Severa Bunda, N Kaviani, and A Hinek *J. Biol. Chem., Vol. 280, Issue 3, 2341-2351, Jan 21, 2005* www.jbc.org/cgi/reprint/280/3/2341
- 35. Effect of Ascorbic Acid, Silicon and Iron on Collagen Synthesis in the Human Dermal Fibroblast Cell(HS27) Jin-ah Lee and Yunhi Cho *The FASEB Journal*.2008;22:lb672 www.fasebj.org/cgi/content/meeting abstract/22/2 MeetingAbstracts/672
- 36. **Nutrition in Bone Health Revisited: A Story Beyond Calcium** Jasminka Z. Ilich, and Jane E. Kerstetter *Journal of the American College of Nutrition, Vol. 19, No. 6, 715-737 (2000)* www.jacn.org/cgi/content/full/19/6/715#SEC9
- 37. The Association between Hematological and Inflammatory Factors and Stress Fractures among Female Military Recruits Merkel, Drorit; Moran, Daniel S.; Yanovich, Ran; Evans, Rachel K.; Finestone, Aharon S.; Constantini, Naama; Israeli, Eran *Medicine & Science in Sports & Exercise:Volume 40(11) Suppl 1November 2008pp S691-S697* www.acsmmsse.org/pt/re/msse/abstract.00005768-200811001-00013.htm
- 38. **Forging a field: the golden age of iron biology** Nancy C. Andrews *Blood, 15 July 2008 Volume 112, Number 2-ASH 50th anniversary review* http://bloodjournal.hematologylibrary.org/cgi/reprint/112/2/219
- 39. Occult Gastro-intestinal Bleeding: Detection, Interpretation, and Evaluation M Beg, M Singh, MK Saraswat, BB Rewari Journal, Indian Academy of Clinical Medicine Vol. 3, No. 2 April-June 2002 http://medind.nic.in/jac/t02/i2/jact02i2p153.pdf
 LEAD Action News Volume 9 Number 3

 June 2009

 Page 16 of 32

- 40. Mineral Requirements for Military Personnel: Levels Needed for Cognitive and Physical Performance

 During Garrison Training (3) Mineral Recommendations for Military Performance Institute of Medicine of the National Academies National Academies Press http://books.nap.edu/openbook.php?record_id=11610&page=R2
- 41. **Gastrointestinal (GI) bleeding in endurance runners.** Stephanie Horn, Edward R. Feller *AMAA Journal Winter* 2003 http://findarticles.com/p/articles/mi_m0NHG/is_1_16/ai_98542872/pg_1?tag=content;col1
- 42. **Blood Loss Is a Stronger Predictor of Iron Status in Men Than C282Y Heterozygosity or Diet** Anne-Louise M. Heath, Mark A. Roe, Sarah L. Oyston, Andrew R. Gray, Sheila M. Williams and Susan J. Fairweather-Tait *Journal of the American College of Nutrition, Vol. 27, No. 1, 158-167 (2008)* www.jacn.org/cgi/content/abstract/27/1/158
- 43. Iron intake does not significantly correlate with iron deficiency among young Japanese women: a cross-sectional study Keiko Asakuraa, S Sasaki, K Murakamia, Y Takahashia, K Uenishia, M Yamakawaa, Y Nishiwakia, Y Kikuchia, T Takebayashia and the JDSSNBG *Public Health Nutrition Cambridge University Press*www.journals.cambridge.org/action/displayAbstract?fromPage=online&aid=2842380
- 44. **Disorders of the Iron Metabolism: Iron absorption** Brigham's and Women's Hospital [Note that this article predates the discovery of the regulatory role of hepcidin or DMT1; contrast with 36 **Forging a field**] http://sickle.bwh.harvard.edu/iron_absorption.html
- 45. **Interactions between iron deficiency and lead poisoning: epidemiology and pathogenesis** Wilson T. Kwong, Phyllis Friello and Richard D. Semba *Science of The Total Environment, Volume 330, Issues 1-3*, *1 September 2004, Pages 21-37 www.amazon.com/Interactions-between-iron-deficiency-poisoning/dp/B000RQYW2E*
- 46. **Lead toxicity, a review of the literature. Part I: exposure, evaluation, and treatment** Lyn Patrick Alternative Medicine Review Volume 11, Number 1 2006 www.thorne.com/media/Lead_2.pdf
- 47. **Stimulation of erythrocyte phosphatidylserine exposure by lead ions** Daniela S. Kempe, Philipp A. Lang, Kerstin Eisele, Barbara A. Klarl, Thomas Wieder, Stephan M. Huber, Christophe Duranton, and Florian Lang *Am J Physiol Cell Physiol* 288: C396-C402, 2005 http://ajpcell.physiology.org/cgi/content/full/288/2/C396
- 48. **Lead neurotoxicity in children: basic mechanisms and clinical correlates** Theodore I. Lidsky and Jay S. Schneider *Brain (2003), 126, 5-19* http://brain.oxfordjournals.org/cgi/content/full/126/1/5
- 49. **Aluminium and lead: molecular mechanisms of brain toxicity** Sandra V. Verstraeten; Lucila Aimo; Patricia I. Oteiza *Arch Toxicol DOI 10.1007/s00204-008-0345-3* www.springerlink.com/content/n2577l6701144654/fulltext.pdf
- 50. **Different Mechanisms Mediate Uptake of Lead in a Rat Astroglial Cell Line** Jae Hoon Cheong, Desmond Bannon, Luisa Olivi, Yongbae Kim and Joseph Bressler *Toxicological Sciences vol.* 77 no. 2, 2004 http://toxsci.oxfordjournals.org/cgi/reprint/77/2/334
- 51. Iron supplementation protects against lead-induced apoptosis through MAPK pathway in weanling rat cortex Qiang Wang, Wenjing Luo, Wenbing Zhang, Zhongming Dai, Yaoming Chen, Jingyuan Chen NeuroToxicology 28 (2007) 850–859 www.beyotime.com/reference/c1115-ref6.pdf
- 52. **Iron supplement prevents lead-induced disruption of the blood/brain barrier during rat development** Qiang Wang, Wenjing Luo, Wei Zheng, Y Liu, H Xua, G Zhenga, Z Dai, W Zhang, Y Chen and J Chen *Toxicology and Applied Pharmacology, Vol 219, Issue 1, 15 February 2007, p33-41 <u>www.sciencedirect.com/science? ob=ArticleURL& udi=B6WXH-4MHNRJ1-1</u>*
- 53. **Blood Iron Screening for Body Iron Status** *Lexington Medical Center, West Columbia, S.C.* http://poptop.hypermart.net/iron.html
- 54. **Iron Deficiency and Helicobacter pylori Infection in the United States** Victor M. Cardenas, Zuber D. Mulla, Melchor Ortiz, and David Y. Graham *American Journal of Epidemiology 2006;163:127–134* http://aje.oxfordjournals.org/cgi/reprint/163/2/127
- 55. Experiences and Challenges in Industrialized Countries: Control of Iron Deficiency in Industrialized Countries Usha Ramakrishnan and Ray Yip *J. Nutr. 132:820S-824S*, 2002 http://jn.nutrition.org/cgi/content/full/132/4/820S
 - **56.** Iron Deficiency Anemia www.innvista.com/HEALTH/ailments/anemias/irondef.htm
- 57. **Iron Deficiency United States, 1999-2000** AC Looker, ME Cogswell and EW Gunter *CDC Morbidity and Mortality Weekly Report October 11, 2002 / Vol. 51 / No. 40* www.cdc.gov/mmwR/PDF/wk/mm5140.pdf
- 58. **Iron deficiency in Europe** Serge Hercberg, Paul Preziosi and Pilar Galan *Public Health Nutrition: 4(2B)*, 537±545 2001 http://journals.cambridge.org/download.php?file=%2F7D42F368FEE9E89B68B5E3CB008D74F5 tomcat1
- 59. **Iron status during pregnancy: setting the stage for mother and infant** Theresa O Scholl *Am J Clin Nutr* 2005;81(suppl):1218S–22S. www.ajcn.org/cgi/reprint/81/5/1218S
- 60. **Prevalence of Iron Deficiency in the General Population in Taiwan** Ning-Sing Shaw, Weng -Ting Yeng, Wen-Han Pan *Nutritional Sciences Journal*, 1999, Vol. 24, No.1, pp119-138 http://food.doh.gov.tw/foodnew/Files/Research/1993%20-%201996/e14.pdf
- 61. **Iron status in young Danish men and women: a population survey comprising 548 individuals** N. Milman, J. O. Clausen, R. Jordal *Ann Hematol (1995) 70:215-221; Jul-Aug 1995*www.springerlink.com/content/w666783t4qj33035/fulltext.pdf?page=1
- 62. **Factors affecting iron status in 15-30 year old female students** AM Rangan, I Aitkin, GD Blight, CW Binns *Asia Pacific J Clin Nutr* (1997) 6(4): 291-295 http://apjcn.nhri.org.tw/server/APJCN/Volume6/vol6.4/rangan.htm
 - **63.** Anaemia Peak Performance website www.pponline.co.uk/encyc/0247.htm

- 64. **Iron status and exercise** John Beard and Brian Tobin *Am J Clin Nutr* 2000;72(suppl):594S-7S. www.ajcn.org/cgi/reprint/72/2/594S
- 65. Prevalence of Iron Deficiency and Iron Deficiency Anemia among Three Populations of Female Military Personnel in the US Army James P. McClung, Louis J. Marchitelli, Karl E. Friedl, Andrew J. Young, *Journal of the American College of Nutrition, Vol.* 25, No. 1, 64–69 (2006) www.jacn.org/cgi/reprint/25/1/64
- 66. **Prevalence of Iron Deficiency with and without Anemia in Recreationally Active Men and Women** Lisa M. Sinclair; Pamela Sue Hinton *Journal of the American Dietetic Association 2005;105:975-978.* www.idpas.org/pdf/4265.pdf
- 67. **Higher prevalence of anemia among pregnant immigrant women compared to pregnant ethnic Danish women** Mads Nybo,Lennart Friis-Hansen, Peter Felding and Nils Milman *Annals of Hematology* (2007) 86:647–651 www.springerlink.com/content/8732652717228l11/
- 68. **Iron Deficiency Anemia and Depleted Body Iron Reserves Are Prevalent among Pregnant African-American Adolescents** Lora L. Iannotti, Kimberly O. O'Brien, Shih-Chen Chang, Jeri Mancini, M. Schulman-Nathanson, S. Liu, Z. L. Harris and F. R. Witter *J. Nutr.* 135:2572-2577, *November* 2005 http://jn.nutrition.org/cgi/content/full/135/11/2572
 - 69. OC Anemia Task Force HCA Nutrition services www.ochealthinfo.com/public/nutrition/anemia.htm
- 70. Iron deficiency in Australian-born children of Arabic background in central Sydney Margaret A Karr, Michael Mira, Garth Alperstein, Samia Labib, Boyd H Webster, Ahti T Lammi and Patricia Beal *Medical Journal of Australia 2001; 174:* 165-168 www.mja.com.au/public/issues/174 04 190201/karr/karr.html
- 71. **Overweight Children and Adolescents: A Risk Group for Iron Deficiency** Karen G. Nead, Jill S. Halterman, Jeffrey M. Kaczorowski, Peggy Auinger and Michael Weitzman *Pediatrics Vol. 114 No. 1 July 2004* http://pediatrics.aappublications.org/cgi/reprint/114/1/104
- 72. Iron Deficiency, Prolonged Bottle-Feeding, and Racial/Ethnic Disparities in Young Children Jane M. Brotanek, Jill S. Halterman, Peggy Auinger, Glenn Flores and Michael Weitzman Archives of Pediatric & Adolescent Medicine Vol 159, Nov 2005 http://archpedi.ama-assn.org/cgi/reprint/159/11/1038
- 73. **Nutrient intake and iron status of Australian male vegetarians** AK Wilson and MJ Ball *European Journal of Clinical Nutrition (1999) 53, 189±194* www.nature.com/ejcn/journal/v53/n3/pdf/1600696a.pdf
- 74. **Dietary intake and iron status of Australian vegetarian women** Madeleine J Ball and Melinda A Bartlett *Am J Clin Nutr 1999*;70:353–8. www.ajcn.org/cgi/reprint/70/3/353.pdf
- 75. **Bioavailability of iron, zinc, and other trace minerals from vegetarian diets** Janet R. Hunt *Am J Clin Nutr* 2003;78(suppl):633S–9S www.ajcn.org/cgi/reprint/78/3/633S
- 76. <u>Prevention and Control of Iron Deficiency Anaemia in Women and Children</u> Section 2:Prevalence, Causes and Consequences WHO Regional Office for Europe www.euro.who.int/Document/E73102.pdf [Note the stats are not current since a successful iron fortification program for food was carried out in central Asia following this report]
- 77. **Estimating the burden of disease attributable to iron deficiency anaemia in South Africa in 2000** Beatrice Nojilana, Rosana Norman, Muhammad A Dhansay, Demetre Labadarios, Martha E van Stuijvenberg, Debbie Bradshaw and the SACRACG *SAMJ August 2007, Vol. 97, No. 8* www.sahealthinfo.org/bod/iron.pdf
- 78. Prevalence of iron deficiency with and without concurrent anemia in population groups with high prevalences of malaria and other infections: a study in Côte d, Ivoire Franziska Staubli Asobayire, Pierre Adou, Lena Davidsson, James D Cook, and Richard F Hurrell *Am J Clin Nutr* 2001;74:776–82 www.ajcn.org/cgi/reprint/74/6/776
- 79. **Iron deficiency anemia in children: a challenge for public health and for society** Geraldo Coutinho, Eny Goloni-Bertollo, Érika Bertelli *Sao Paulo Med J. 2005;123(2):88-92*. www.scielo.br/scielo.php?pid=S1516-31802005000200011&script=sci_arttext
- 80. Situational Analysis Of Iron Deficiency Anemia In South-East Asian Countries WHO SEA Regional office http://whqlibdoc.who.int/searo/1994-99/SEA NUT 135.pdf
- 81. **Iron Deficiency in Children With Attention-Deficit /Hyperactivity Disorder** Eric Konofal, Michel Lecendreux, Isabelle Arnulf and Marie-Christine Mouren *Arch Pediatr Adolesc Med/Vol 158*, *Dec 2004* http://archpedi.ama-assn.org/cgi/reprint/158/12/1113
- 82. **Lead and Neuroprotection by Iron in ADHD** [Letter of comment] Eric Konofal *EHP Volume 115*, No 8, Aug 2007 www.ehponline.org/docs/2007/115-8/EHP115pa395PDF.pdf
- 83. **Cross-Sectional Study of Blood Lead Effects on Iron Status in Korean Lead Workers** Hee-Seon Kim, Sung-Soo Lee, Young Hwangbo, Kyu-Dong Ahn, and Byung-Kook Lee *Nutrition 19:571–576*, 2003 www.idpas.org/pdf/3214CrossSectionalStudyofBlood.pdf
- 84. Iron requirements in pregnancy and strategies to meet them T H Bothwell Am J Cl Nutr, Vol. 72, No. 1, 257S-264s, July 2000 www.ajcn.org/cgi/reprint/72/1/257S
- 85. High-, but not low-bioavailability diets enable substantial control of women"s iron absorption in relation to body iron stores, with minimal adaptation within several weeks Janet R Hunt Am J Cl Nutr, Vol. 78, No. 6, 1168-1177, December 2003 www.ajcn.org/cgi/reprint/78/6/1168
- 86. **Iron status and iron balance during pregnancy. A critical reappraisal of iron supplementation.** Milman N,Bergholt T, Byg KE, Eriksen L and Gradal N *Acta Obstet Gynecol Scand. 2000 Jul; 79(7):620-1* www.ncbi.nlm.nih.gov/pubmed/10535335

- 87. **Iron needs during pregnancy: do we need to rethink our targets?** George H Beaton *Am. J. Cl. Nutr.*, *Jul 2000;* 72: 265S 271S. www.ajcn.org/cgi/reprint/72/1/265S
- 88. **How much iron do pregnant women need?** Steve Austin *Original Internist Sept 2005* http://findarticles.com/p/articles/mi_m0FDL/is_3_12/ai_n17211125/pg_2?tag=content;col1
- 89. **Relationship between the iron status of pregnant women and their newborns** Adriana de A Paiva, Patrícia H C Rondó, RA Pagliusi, MdRDO Latorre, MAA Cardoso, SSR Gondim *Rev Saúde Pública 2007;41(3)* www.scielo.br/pdf/rsp/nahead/ao-5737.pdf
- 90. Comparison of Maori and non-Maori maternal and fetal iron parameters Diane Emery, David Barry New Zealand Medical Journal 4 June 2004, Vol 117 No 1195 www.nzma.org.nz/journal/117-1195/909/content.pdf
- 91. Maternal iron status influences iron transfer to the fetus during the third trimester of pregnancy Kimberly O O'Brien, Nelly Zavaleta, Steven A Abrams, and L E Caulfield *Am. J. Cl. Nutr.*, *Apr 2003; 77: 924 930.* www.ajcn.org/cgi/reprint/77/4/924
- 92. **Predictors of iron status in well-nourished 4-y-old children** Inger Öhlund, Torbjörn Lind, Agneta Hörnell and Olle Hernel *Am. J. Cl. Nutr.*, *Vol. 87, No. 4, 839-845*, *April 2008* www.ajcn.org/cgi/content/abstract/87/4/839
- 93. Anaemia during pregnancy as a risk factor for iron-deficiency anaemia in infancy: a case control study Julia Kilbride, Terry G Baker, Liakat A Parapta, Saml A Khoury, Saher W Shuqaldef International Journal of Epidemiology Vol 28 No 3:461 1999 http://ije.oxfordjournals.org/cgi/reprint/28/3/461
- 94. **Anemia in High-Risk Infants: A Randomized Clinical Trial** Paul L. Geltman, Alan F. Meyers, Supriya D. Mehta, C Brugnara, I Villon, Y. A. Wu and H Bauchner *Pediatrics Vol. 114 No. 1 July 2004, Pp. 86-93* http://pediatrics.aappublications.org/cgi/content/abstract/114/1/86
- 95. Multiple micronutrients in pregnancy and lactation: an overview Lindsay H Allen *Am. J. Cl. Nutr., May 2005;* 81: 1206S 1212S www.ajcn.org/cgi/reprint/81/5/1206S
- 96. **Iron, zinc, and copper concentrations in breast milk are independent of maternal mineral status** Magnus Domellöf, Bo Lönnerdal, KG Dewey, RJ Cohen and O Hernell *Am. J. C.l Nut., Vol. 79, No. 1, 111-115, January 2004* www.ajcn.org/cgi/reprint/79/1/111
- 97. **Cord Blood and Breast Milk Iron Status in Maternal Anemia** Ashok Kumar, Arun Kumar Rai,, Sriparna Basu, Debabrata Dash, and Jamuna S Singh *Pediatrics Vol. 121 No. 3 March 2008, pp. e673-e677* http://pediatrics.aappublications.org/cgi/content/full/121/3/e673
- 98. **A prospective study of iron status in exclusively breastfed term infants up to 6 months of age** Shashi Raj, MMA Faridi, Usha Rusia, and Om Singh *International Breastfeeding Journal .March 1 2008; 3: 3.* www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2277383
- 99. **Risk of Infant Anemia Is Associated with Exclusive Breast-Feeding and Maternal Anemia in a Mexican Cohort** Jareen K. Meinzen-Derr, M. Lourdes Guerrero, Mekibib Altaye, Hilda Ortega-Gallegos, Guillermo M. Ruiz-Palacios and Ardythe L. Morrow *J. Nutr.* 136:452-458, February 2006 https://jn.nutrition.org/cgi/reprint/136/2/452
- 100. **Study of maternal influences on fetal iron status at term using cord blood transferrin receptors** D G Sweet, G Savage, T R J Tubman, T R J Lappin, H L Halliday *Archives of Disease in Childhood: Child Fetal Neonatal Ed 2001;84:F40–F43* www.pubmedcentral.nih.gov/picrender.fcgi?artid=1721190&blobtype=pdf
- 101. **Iron status of babies born to iron-deficient anaemic mothers in an Iranian hospital** F. Emamghorashi and T. Heidari *Eastern Mediterranean Health Journal Volume 10, No 6, November 2004* www.emro.who.int/publications/emhj/1006/Iron_status.htm
- 102. **Predictors of serum ferritin and serum soluble transferrin receptor in newborns and their associations with iron status during the first 2 y of life** Gry Hay, Helga Refsum, Andrew Whitelaw, Elisabeth Lind Melbye, Egil Haug and Berit Borch-Iohnsen *Am J of Cl Nutr, Vol. 86, No. 1, 64-73, July 2007* www.ajcn.org/cgi/content/full/86/1/64
- 103. **Iron in fetal and neonatal nutrition** Raghavendra Rao, and Michael K. Georgieff Semin Fetal Neonatal Med. 2007 February; 12(1): 54–63. www.pubmedcentral.nih.gov/picrender.fcgi?artid=2048487&blobtype=pdf
- **104. Breast-feeding and anemia: Let"s be careful** John C. Godel *Canadian Medical Association Journal FEB. 8,* 2000; 162 (3) www.cmaj.ca/cgi/reprint/162/3/343.pdf
- 105. **Fetal Alcohol Exposure, Iron-Deficiency Anemia, and Infant Growth** R. Colin Carter, Sandra W. Jacobson, C. D. Molteno and J. L. Jacobson, *Pediatrics Vol. 120 No. 3 September 2007, Pp. 559-567*http://pediatrics.aappublications.org/cgi/content/full/120/3/559
- 106. **Exclusive Breast-Feeding for 6 Months, with Iron Supplementation, Maintains Adequate Micronutrient Status among Term, Low-Birthweight, Breast-Fed Infants in Honduras** Kathryn G. Dewey, Roberta J. Cohen and Kenneth H. Brown *J. Nutr.* 134:1091-1098, May 2004 http://jn.nutrition.org/cgi/reprint/134/5/1091
- 107. **Infant feeding in the second 6 months of life related to iron status: an observational study** David Hopkins, Pauline Emmett, Colin Steer, Imogen Rogers, Sian Noble, Alan Emond *Archives of Disease in Childhood* 2007;92:850-854 http://adc.bmj.com/cgi/content/abstract/92/10/850
- 108. **Anemia and iron deficiency: effects on pregnancy outcome** Lindsay H Allen *Am J Clin Nutr* 2000;71(suppl):1280S–4S. www.ajcn.org/cgi/reprint/71/5/1280S

- 109. **Effect of early maternal iron stores on placental weight and structure** P C Hindmarsh, M P P Geary, C H Rodeck, M R Jackson, J C P Kingdom *The Lancet Vol 356 August 26, 2000* http://download.thelancet.com/pdfs/journals/lancet/PIIS0140673600026301.pdf
- 110. **Predicting Factors in Iron Supplement Intake among Pregnant Women in Urban Care Setting** Yekta Z. PhD, Ayatollahi H. PhD, Pourali R, Farzin A *J Res Health Sci, Vol. 8, No. 1, pp. 39-45*, 2008 www.umsha.ac.ir/jrhs/Upload/6-920Maryamyekta
- 111. **Iron supplementation compliance among pregnant women in Bicol, Philippines** Pamela L Lutsey, David Dawe, Ellen Villate, Shiela Valencia and Ofelia Lopez http://journals.cambridge.org/download.php?file=%2F68454BEC6BEC6
- 112. **Iron Fortification Reduces Blood Lead Levels in Children in Bangalore, India** Michael B. Zimmermann, Sumithra Muthayya, Diego Moretti, A. Kurpad and R. F. Hurrell *Pediatrics* 2006;117;2014-2021 http://pediatrics.aappublications.org/cgi/reprint/117/6/2014
- 113. **Iron Deficiency in Young Lebanese Children: Association With Elevated Blood Lead Levels[Clinical and Laboratory Observations**] Muwakkit, Samar; Nuwayhid, Iman; Nabulsi, Mona; al Hajj, Rima; Khoury, Ruby; Mikati, M; Abboud, M *Journal of Pediatric Hematology/Oncology: Volume 30(5)May 2008pp 382-386* www.jphoonline.com/pt/re/jpho/abstract.00043426-200805000-00010.htm
- 114. **Effects of iron therapy on infant blood lead levels** Abraham W. Wolf, Elias Jimenez, Betsy Lozoff *The Journal of Pediatrics Vol 143 Issue 6 p789-795 (December 2003)* www.jpeds.com/article/S0022-3476(03)00540-7/abstract
- 115. **Maternal Iron Deficiency and the Risk of Schizophrenia in Offspring** Beverly J. Insel; C.A. Schaefer; I. W. McKeague; E.S. Susser; A.S. Brown *Arch Gen Psychiatry*. 2008;65(10):1136-1144 www.coaching-for-health.net/eisenzentrum/studien/studie48.pdf
- 116. **Prenatal Lead Exposure, delta-Aminolevulinic Acid, and Schizophrenia** MGA Opler, AS Brown, J Graziano, M Desai, W Zheng, C Schaefer, P Factor-Litvak, & ES Susser *Environmental Health Perspectives, Vol 112 No 5 April* 2004 www.ehponline.org/members/2004/6777/6777.html
 - 117. Pica SBN Dugan www.healthatoz.com/healthatoz/Atoz/common/standard/transform.jsp
- 118. Managing Elevated Blood Lead Levels Among Young Children: Chapter 4 Nutritional Assessment and Interventions CDC Advisory Committee on Childhood Lead Poisoning Prevention www.cdc.gov/nceh/lead/casemanagement/caseManage_chap4.htm
- 119. **The role of iron therapy in childhood plumbism** Wright, RO *Current Opinions in Pediatrics 11(3):255-258, June 1999.* www.ncbi.nlm.nih.gov/pubmed/10349106?dopt=Abstract
- 120. Iron and/or Zinc Supplementation Did Not Reduce Blood Lead Concentrations in Children in a Randomized, Placebo-Controlled Trial Jorge L. Rosado, Patricia Lo´ pez, Katarzyna Kordas, G. Garcı´a-Vargas, D. Ronquillo, J. Alatorre, and R. J. Stoltzfus *J. Nutr. 2006 136: 2378-2383*. http://jn.nutrition.org/cgi/content/full/136/9/2378
- 121. Low Blood Lead Levels Do Not Appear to Be Further Reduced by Dietary Supplements Brian L. Gulson, Karen J. Mizon, Michael J. Korsch, and Alan J. Taylor EHP VOLUME 114, NUMBER 8, August 2006 www.ehponline.org/members/2006/8605/8605.pdf
- 122. **Blood lead levels in iron-deficient and non iron-deficient adults** H. Alabdullah, D. Bareford, R. Braithwaite, K. Chipman *Clin. Lab. Haem.* 2005, 27, 105–109 http://faculty.ksu.edu.sa/abbasalsaeed/Intersting%20aricle%20for%20students
- 123. **Iron imports. IV. Hepcidin and regulation of body iron metabolism** Tomas Ganz and Elizabeta Nemeth Am J Physiol Gastrointest Liver Physiol 290: G199–G203, 2006 http://aipgi.physiology.org/cgi/reprint/290/2/G199
- 124. **Molecular Control of Iron Transport** Tomas Ganz *J Am Soc Nephrology 18: 394–400*, 2007. http://jasn.asnjournals.org/cgi/reprint/18/2/394.pdf
- 125. **Iron-regulatory protein hepcidin is increased in female athletes after a marathon** L. Roecker, R. Meier-Buttermilch, L. Brechtel, E. Nemeth, T. Ganz *Eur J Appl Physiol (2005) 95: 569–571* www.springerlink.com/content/p6725154g0224581/fulltext.pdf
- 126. Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones
 Peter Peeling Brian Dawson Carmel Goodman Grant Landers Debbie Trinder Eur J Appl Physiol (2008) 103:381–391
 www.springerlink.com/content/083187167x58135g/fulltext.pdf
 - 127. Too Much Iron Iron Disorder's Institute www.commerciallysound.com/IDI/Disorders/TooMuchIron.asp
- 128. **Iron-Overload Related Disease in HFE Hereditary Hemochromatosis** Katrina J. Allen, Lyle C. Gurrin, Clare C. Constantine, NJ Osborne, MB Delatycki, AJ Nicoll, CE McLaren, M Bahlo, AE Nisselle, CD Vulpe, GJ Anderson, MC Southey, GG Giles, DR English, JL Hopper, JK Olynyk, LW Powell and DM Gertig. New England Journal of Medicine Volume 358:221-230 January 26 2008 http://content.nejm.org/cgi/reprint/358/3/221.pdf
- 129. **Hemochromatosis and Iron-Overload Screening in a Racially Diverse Population [A Review]** Heidi Michels Blanck, Michele Reyes *CDC Genetics HuGENet: ejournal* www.cdc.gov/genomics/hugenet/ejournal/iron.htm
- 130. **Iron treatment normalizes cognitive functioning in young women** Laura E Murray-Kolb and John L Beard Am J Cl Nutr 2007;85:778–87. www.ajcn.org/cgi/reprint/85/3/778
- 131. Behavioral and developmental Outcome More Than 10 Years After Treatment for Iron Deficiency in Infancy Betsy Lozoff, E. Jimenez, J. Hagen, E. Mollen and A. W. Wolf *Pediatrics* 2000; 105;e51 http://pediatrics.aappublications.org/cgi/reprint/105/4/e51

- 132. **Iron Deficiency and Cognitive Achievement Among School-Aged Children and Adolescents in the United States** Jill S. Halterman, ; Jeffrey M. Kaczorowski; C. Andrew Aligne; Peggy Auinger; and Peter G. Szilagyi *Pediatrics* 2001;107;1381-1386 http://pediatrics.aappublications.org/cgi/reprint/107/6/1381
- 133. **Long-lasting neural and behavioral effects of iron deficiency in infancy** Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, Schallert T. *Nutr Rev.* 2006 May;64(5 Pt 2):S34-43; www.pwsdots.org/ResearchDatabase/2006-05-01Lazoff
- 134. **Maternal Iron Deficiency Anemia Affects Postpartum Emotions and Cognition** John L. Beard, Michael K. Hendricks, E. M. Perez, L. E. Murray-Kolb, A. Berg, L. Vernon-Feagans †, J. Irlam, W. Isaacs, A. Sive and M. Tomlinson *J. Nutr.* 135:267-272, February 2005 http://jn.nutrition.org/cgi/content/full/135/2/267
- 135. **Mother-Infant Interactions and Infant Development Are Altered by Maternal Iron Deficiency Anemia** Eva M. Perez, Michael K. Hendricks, John L. Beard, LE Murray-Kolb, A Berg, M Tomlinson, J Irlam, W Isaacs, T Njengele, A Sive and L Vernon-Feagans *J. Nutr.* 135:850-855, April 2005 http://jn.nutrition.org/cgi/content/full/135/4/850
- 136. **Iron deficiency and child and maternal health** Laura E Murray-Kolb and J L Beard *Am J Cl Nutr (January 21, 2009)*. www.ajcn.org/cgi/content/abstract/ajcn.2008.26692Dv1
- 137. **Iron Deficiency and Physical Growth Predict Attainment of Walking but Not Crawling in Poorly Nourished Zanzibari Infants** Patricia K. Kariger, Rebecca J. Stoltzfus, D Olney, S Sazawal, R Black, JM Tielsch, EA Frongillo, SS Khalfan, and E Pollitt *Journal of Nutrition 135 (4) 814 2005* http://jn.nutrition.org/cgi/reprint/135/4/814
- 138. **Combined Iron and Folic Acid Supplementation with or without Zinc Reduces Time to Walking Unassisted among Zanzibari Infants 5- to 11-mo old** Deanna K. Olney, E Pollitt, PK Kariger, SS Khalfan, NS Ali, JM Tielsch, S Sazawal, R Black, LH Allen, and RJ Stoltzfus *J Nutr* 136 (9): 2427. (2006) http://jn.nutrition.org/cgi/reprint/136/9/2427
- 139. **Behavioral and Developmental Effects of Preventing Iron-Deficiency Anemia in Healthy Full-Term Infants** Betsy Lozoff. Isidora De Andraca, Marcela Castillo, Julia B. Smith, Tomas Walter and Paulina Pino *Pediatrics* 2003;112;846-854 http://pediatrics.aappublications.org/cgi/reprint/112/4/846
- 140. An Event-Related Potential Study of Attention and Recognition Memory in Infants With Iron-Deficiency Anemia Matthew J Burden, AJ Westerlund, R Armony-Sivan, CA Nelson, SW Jacobson, B Lozoff, ML Angelilli and JL Jacobson Pediatrics Vol. 120 No. 2 August 2007, Pp. E336-E345 http://pediatrics.aappublications.org/cgi/content/full/120/2/e336
- 141. **Iron Deficiency Alters Auditory Recognition Memory in Newborn Infants of Diabetic Mothers**Ashajyothi M. Siddappa, Michael K. Georgieff, Sandi Wewerka, Cathy Worwa, Charles A. Nelson, And Raye-Ann Deregnier
 Pediatric Research Vol. 55, No. 6, 2004 www.pedresearch.org/pt/re/pedresearch/pdfhandler.00006450-200406000-00021.pdf
- 142. **The role of iron in neurodevelopment: fetal iron deficiency and the developing hippocampus** Michael K. Georgieff *Biochemical Society Transactions* (2008) 36, 1267–1271 www.biochemsoctrans.org/bst/036/1267/0361267.pdf
- 143. **Enriched environment during development is protective against lead-induced neurotoxicity** J. S. Schneider, M. H. Lee, D. W. Anderson, L. Zuck and T. I. Lidsky *Brain Research Volume 896 Isues1-2 30 March 2001*, p48-55 www.sciencedirect.com/science/journal/00068993
- 144. Effects of iron supplementation and anthelmintic treatment on motor and language development of preschool children in Zanzibar: double blind, placebo controlled study Rebecca J Stoltzfus, Jane D Kvalsvig, Hababu M Chwaya, Antonio Montresor, Marco Albonico, James M Tielsch, Lorenzo Savioli, Ernesto Pollitt *BMJ VOLUME 323 15 DECEMBER 2001* www.bmj.com/cgi/reprint/323/7326/1389
- Double Burden of Iron Deficiency in Infancy and Low Socioeconomic Status: A Longitudinal Analysis of Cognitive Test Scores to Age 19 Years Betsy Lozoff, Elias Jimenez, Julia B. Smith *Arch Pediatr Adolesc Med/Vol 160, Nov 2006* http://archpedi.ama-assn.org/cgi/reprint/160/11/1108.pdf
- **146. Iron Update Why do I need more iron** Melinda Ramsay <u>http://sanitarium-au.hosting.co.nz/article/article.do?art-id=88</u>
- 147. **Dietary treatment of iron deficiency in women of childbearing age** Amanda J Patterson, Wendy J Brown, David CK Roberts, and Michael R Seldon *Am J Clin Nutr* 2001;74: 650–6. www.ajcn.org/cgi/reprint/74/5/650
- 148. Can Dietary Treatment of Non-Anemic Iron Deficiency Improve Iron Status? Anne-Louise M. Heath C. Murray Skeaff, Sue M. O'Brien, Sheila M. Williams and RS Gibson *J Am College of Nutrition, Vol. 20, No. 5, 477–484 (2001)* www.jacn.org/cgi/reprint/20/5/477
- 149. **How important is dietary iron bioavailability?** Janet R Hunt *The American Journal of Clinical Nutrition* 2001;73:3–4 Editorial www.ajcn.org/cgi/reprint/73/1/3
- 150. **Effect of ascorbic acid intake on nonheme-iron absorption from a complete diet** James D Cook and Manju B Reddy *American Journal of Clinical Nutrition, Vol. 73, No. 1, 93-98, January 2001* www.ajcn.org/cgi/reprint/73/1/93
- 151. **Phosphorus** James P. Knochnel *Micronutrient Information Center, Linus Pauling Institute, Oregon State University* http://lpi.oregonstate.edu/infocenter/minerals/phosphorus/
 - 152. Why Iron levels remain Low Tony Pearce Femail www.femail.com.au/iron-levels-tony-pearce.htm
- 153. **Mechanisms of heme iron absorption: Current questions and controversies** Adrian R West, Phillip S Oates World Journal of Gastroenterology 2008 July 14; 14(26): 4101-4110 www.wignet.com/1007-9327/14/4101.pdf
- 154. **Effect of Glycosaminoglycans on Nonheme Iron Absorption** [Letter] Fuxia Jin and Raymond P. Glahn *J. Nutr.* 137:2329, October 2007 http://jn.nutrition.org/cgi/content/full/137/10/2329
- 155. **Reply to Jin and Glahn** [Letter] Stefan S genannt Bonsmann and Richard Hurrell *J. Nutr. 137:2330, Oct* 2007 http://jn.nutrition.org/cgi/content/full/137/10/2330

- 156. L--Glycerophosphocholine Contributes to Meat's Enhancement of Nonheme Iron Absorption Charlotte N. Armah, Paul Sharp, Fred A Mellon, Sandra Pariagh, EK Lund, JR Dainty, B Teucher and SJ Fairweather-Tait *J. Nutr. 138:873-877, May 2008* http://jn.nutrition.org/cgi/content/abstract/138/5/873
- 157. Pork meat increases iron absorption from a 5-day fully controlled diet when compared to a vegetarian diet with similar vitamin C and phytic acid content Mette Bach Kristensen, Ole Hels, Catrine Morberg, Jens Marving, Susanne Bu"gel and Inge Tetens British Journal of Nutrition (2005), 94, 78–83

 http://journals.cambridge.org/download.php?file=%2FBJN%2FBJN94_01%2FS000
- 158. **Effect of Beef and Soy Proteins on the Absorption of Non-Heme Iron and Inorganic Zinc in Children** Paz Etcheverry, Keli M. Hawthorne, Lily K. Liang, Steven A. Abrams, and Ian J. Griffin *J Am Col Nutr, Vol. 25, No. 1, 34–40 (2006)* www.jacn.org/cgi/reprint/25/1/34
- 159. **Meat Consumption in a Varied Diet Marginally Influences Nonheme Iron Absorption in Normal Individuals** Manju B. Reddy, Richard F. Hurrell and James D. Cook *J. Nutr.* 136:576-581, March 2006 http://jn.nutrition.org/cgi/content/full/136/3/576
- 160. **The Role of Meat to Improve the Critical Iron Balance During Weaning** Leif Hallberg; Michael Hoppe; Maria Andersson; Lena Hulther *Pediatrics Vol. 111 No. 4 April 2003* http://pediatrics.aappublications.org/cgi/reprint/111/4/864
- Heme and Chlorophyll Intake and Risk of Colorectal Cancer in the Netherlands Cohort Study Helena F. Balder, Johande Vogel, Margje C.J.F. Jansen, Matty P. Weijenberg, Piet A. van den Brandt, Susanne Westenbrink, Roelof van der Meer and R. Alexandra Goldbohm *Cancer Epidemiology Biomarkers & Prevention Vol. 15*, 717-725, April 2006 http://cebp.aacrjournals.org/cgi/content/full/15/4/717
- Absorption of Nonheme, But Not Heme Iron, Is Substantially Reduced with High Iron Stores Janet Hunt Journal of the American Dietetic Association. 106(8)S2:A-42.

 www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=193539&pf=1
- 163. Inhibitory effects of dietary calcium on the initial uptake and subsequent retention of heme and nonheme iron in humans: comparisons using an intestinal lavage method Zamzam K (Fariba) Roughead, Carol A Zito, and Janet R Hunt Am J Clin Nutr 2005;82:589–97. www.ajcn.org/cgi/reprint/82/3/589
- 164. **Heme-Iron Absorption Is Saturable by Heme-Iron Dose in Women** Fernando Pizarro, Manuel Olivares, Eva Hertrampf, Dora Inés Mazariegos and Miguel Arredondo *J. Nutr. 133:2214-2217*, *July 2003* http://jn.nutrition.org/cgi/content/abstract/133/7/2214
- 165. **Micronutrient Interactions: Impact on Child Health and Nutrition** *International Life Sciences Institute* http://hni.ilsi.org/NR/rdonlyres/8A79C2B5-FE87-4D0E-A165-66E3CB42BE46/0/o4.pdf
- 166. **Iron Nutritional Status Is Improved in Brazilian Preterm Infants Fed Food Cooked in Iron Pots** Eliana V. M. Borigato and Francisco E. Martinez *The Journal of Nutrition Vol. 128 No. 5 May 1998*, pp. 855-859 http://jn.nutrition.org/cgi/content/full/128/5/855
- 167. **Balti curries and iron** Fairweather, SJ; Fox,TE; Mallillin, A *BMJ* 1995;310:1368 (27 *May*) www.bmj.com/cgi/content/full/310/6991/1368
- 168. Effect of Iron-Food Intake on Anemia Indices; Heamoglobin, Iron and Ferritin among Childbearing Egyptian Females M.K. Abdel-Rahman, A. Aboul Anein and A.M. Hussien World Journal of Agricultural Sciences 4(1): 07-12, 2008 www.idosi.org/wjas/wjas4(1)/2.pdf
- 169. <u>Principles Of Medical Physiology</u>: Chapter 25 Hematinic Factors Sabyasachi Sircar *Theime* 2008 http://books.google.com/books
- 170. **Reduction of Fe(III) Is Required for Uptake of Nonheme Iron by Caco-2 Cells** Okhee Han, Mark L Failla, A. David Hill, Eugene R. Morris And J. Cecil Smith, Jr *J. Nutr.* 125: 1291-1299, 1995. http://jn.nutrition.org/cgi/reprint/125/5/1291
- 171. **Interactions of pH and Ascorbate in Intestinal Iron Absorption** David M. Hungerford, Jr. And Maria C. Linder *J. Nutr.* 113: 2615-2622, April 1983 http://jn.nutrition.org/cgi/reprint/113/12/2615T
- 172. Nathan and Oski's Hematology of Infancy and Childhood Edition 7 Stuart H. Orkin, David G. Nathan, David Ginsburg, AT Look, DE Fisher, SE Lux Elsevier Health Sciences, 2008 http://books.google.com/books?id=9CmOIvgJm4C&pg=PA524&lpg=PA524
- 173. **Gastric Balance: Heartburn Not Always Caused by Excess Acid** Jim English *Nutrition Review* www.nutritionreview.org/library/gastric.acid.html
- 174. **Iron-Deficiency Anemia and Helicobacter pylori Infection: A Review of the Evidence** Suja DuBois, David JKS DuBois and David J Kearney *The American Journal of Gastroenterology (2005) 100, 453–459* www.nature.com/ajg/journal/v100/n2/full/ajg200573a.html
- 175. **Iron and Ascorbic Acid: Proposed Fortification Levels and Recommended Iron Compounds** Sean R. Lynch and Rebecca J. Stoltzfus *J. Nutr. 133:2978S-2984S, September 2003* http://jn.nutrition.org/cgi/content/full/133/9/2978S
- 176. Dietary determinants of iron stores in a free-living elderly population: The Framingham Heart Study Diana J Fleming, Paul F Jacques, Gerard E Dallal, Katherine L Tucker, Peter WF Wilson, and Richard J Wood Am J Clin Nutr 1998;67:722-33 www.ajcn.org/cgi/reprint/67/4/722
- 177. **Vitamin C, the common cold, and iron absorption** JD Cook and ER Monsen *Am J Clinl Nutr, Vol 30,* 235-241, Feb 1977 www.ajcn.org/cgi/content/abstract/30/2/235

- 178. Influence of ascorbic acid on iron absorption from an iron-fortified, chocolate-flavored milk drink in Jamaican children L Davidsson, T Walczyk, A Morris and RF Hurrell *Am J Clin Nutr Vol* 67, 873-877 *May* 1998 www.ajcn.org/cgi/content/abstract/67/5/873
- 179. **Iron absorption in young Indian women: the interaction of iron status with the influence of tea and ascorbic acid** Prashanth Thankachan, Thomas Walczyk, Sumithra Muthayya, Anura V Kurpad and Richard F Hurrell *Am J Clin Nutr, Vol. 87, No. 4, 881-886, April 2008* www.ajcn.org/cgi/content/abstract/87/4/881
- 180. Diet and genetic factors associated with iron status in middle-aged women Janet E Cade, Jennifer A Moreton, Beverley O'Hara, Darren C Greenwood, Juliette Moor, Victoria J Burley, Kairen Kukalizch, D Tim Bishop, and Mark Worwood *Am J Clin Nutr* 2005;82:813–20. www.ajcn.org/cgi/reprint/82/4/813
- 181. **Valence State of Iron in the Presence of Ascorbic Acid and Ethylenediaminetetraacetic Acid** Y-H. Peggy Hsieh, and Yuch Ping Hsieh *J. Agric. Food Chem.*, 1997, 45 (4), 1126-1129 http://pubs.acs.org/doi/pdf/10.1021/jf960684n
- 182. **The Effect of Ascorbic Acid Supplementation on the Blood Lead Levels of Smokers** Earl B. Dawson, Douglas R. Evans, William A. Harris, MC Teter, WJ McGanity *J Am College of Nutr, Vol. 18, No. 2, 166–170 (1999)* www.jacn.org/cgi/reprint/18/2/166.pdf
- 183. Improving bioavailability of iron in Indian diets through food-based approaches for the control of iron deficiency anaemia K.K. Sharma FAO 2003 http://ftp.fao.org/docrep/fao/005/y8346m/y8346m06.pdf
- 184. Noncitrus Fruits as Novel Dietary Environmental Modifiers of Iron Stores in People With or Without HFE Gene Mutations Elizabeth A. Milward; SK Baines; MW Knuiman; HC Bartholomew; ML Divitini; DG Ravine; DG Bruce; And JK Olynyk Mayo Clin Proc. 2008;83(5):543-549 www.mayoclinicproceedings.com/content/83/5/543.full.pdf+html
- 185. **Effect of Orange and Apple Juices on Iron Absorption in Children** Malika Shah, Ian J. Griffin, Carlos H. Lifschitz, Steven A. Abrams *Arch Pediatr Adolesc Med. Dec* 2003;157:1232-1236 http://archpedi.ama-assn.org/cgi/reprint/157/12/1232
- 186. The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables M. Gillooly, T. H. Bothwell, J. D. Torrance, A. P. Macphail, D. P. Derman, W. R. Bezwoda, W. Mills And R. W. Charlton *Br. J. Nutr.* (1983), 49, 331 http://journals.cambridge.org/download.php?file=%2FBJN%2FBJN49 03%
- 187. **No enhancing effect of vitamin A on iron absorption in humans** Thomas Walczyk, Lena Davidsson, Lena Rossander-Hulthen, Leif Hallberg and RF Hurrell *Am J Clin Nutr, Vol. 77, No. 1, 144-149, Jan 2003* www.ajcn.org/cgi/content/full/77/1/144
- 188. **Vitamin A supplementation in children with poor vitamin A and iron status increases erythropoietin and hemoglobin concentrations without changing total body iron** Michael B Zimmermann, Ralf Biebinger, Fabian Rohner, Abdeljawad Dib, Christophe Zeder, Richard F Hurrell, and Nourredine Chaouki *Am J Clin Nutr* 2006;84:580–6. www.ajcn.org/cgi/reprint/84/3/580
- 189. **Vitamin A reduces the inhibition of iron absorption by phytates and polyphenols** Miguel Layrisse, MN García-Casal, L Solano, MA Barón, F Arguello, D Llovera, J Ramírez, I Leets, and E Tropper *Unupress* www.unu.edu/Unupress/food/V191e/ch02.htm
- 190. **b-Carotene and Inhibitors of Iron Absorption Modify Iron Uptake by Caco-2 Cells** Maria Nieves Garcia-Casal, Irene Leets and Miguel Layrisse *J. Nutr. 130: 5-9, 2000* http://jn.nutrition.org/cgi/reprint/130/1/5
- 191. Carotenoids increase iron absorption from cereal-based food in the human M. García-Casal Nutrition Research, Volume 26, Issue 7, Pages 340-344 July 2006 www.nrjournal.com/article/S0271-5317(06)00121-7/abstract
- 192. **Plant Pigments Enhance Iron Absorption** *Softpedia* http://news.softpedia.com/news/Plant-Pigments-Enhance-Iron-Absorption-34897.shtml
- 193. **Oily Fish Increases Iron Bioavailability of a Phytate Rich Meal in Young Iron Deficient Women** Santiago Navas-Carretero, Ana M. Pérez-Granados, Beatriz Sarriá, A Carbajal, MM Pedrosa, MA Roe, SJ Fairweather-Tait, and MP Vaquero *J Am College of Nutrition, Vol. 27, No. 1, 96-101 (2008)* www.jacn.org/cgi/content/abstract/27/1/96
- 194. **Carbohydrate Fractions from Cooked Fish Promote Iron Uptake by Caco-2 Cells** Eun Chul Huh, Arland Hotchkiss, Janine Brouillette and Raymond P. Glahn *J. Nutr.* 134:1681-1689, July 2004 http://jn.nutrition.org/cgi/reprint/134/7/1681
- 195. **Iron absorption from fish sauce and soy sauce fortified with sodium iron EDTA** Meredith C Fidler, Lena Davidsson, Thomas Walczyk, and Richard F Hurrell *Am J Clin Nutr, Vol. 78, No. 2, 274-278, August 2003* www.ajcn.org/cgi/reprint/78/2/274
- 196. **The Interaction of Alcohol and Iron-Overload in the in-vivo Regulation of Iron Responsive Genes** Callie Crist, Elizabeth Klein, John Gollan and Dee Harrison-Findik, Jonathan Frye *Cantaurus, Vol. 15, 2-6, May 2007* www.mcpherson.edu/science/cantaurus/07-crist.pdf
- 197. Effects of Alcohol Consumption on Indices of Iron Stores and of Iron Stores on Alcohol Intake Markers J. B. Whitfield, G. Zhu, A. C. Heath, L. W. Powell, and N. G. Martin Alcohol *Clin Exp Res, Vol 25, No 7, 2001: pp 1037–1045* http://genepi.qimr.edu.au/contents/p/staff/CV301.pdf
- 198. The effect of alcohol consumption on the prevalence of iron overload, iron deficiency, and iron deficiency anemia George N. Ioannou, Jason A. Dominitz, Noel S. Weiss, Patrick J. Heagerty and Kris V. Kowdley Gastroenterology 2004 May;126(5):1293-301 www.ncbi.nlm.nih.gov/pubmed/15131790
- 199. **The effect of red and white wines on nonheme-iron absorption in humans** JD Cook, MB Reddy and RF Hurrell *Am J Clin Nutr, 1995 Vol 61, 800-804* www.ajcn.org/cgi/content/abstract/61/4/800

- 200. **Effect of traditional beer consumption on the iron status of a rural South African population** Solomon Simon Ramphai Choma, Marianne Alberts, Petter Urdal *SAJCN 2007 Vol 20 No 2* www.sajcn.com/2007/effect20no2.pdf
- 201. **Intake of Alcoholic Beverages Is a Predictor of Iron Status and Hemoglobin in Adult Tanzanians** Wabyahe Malenganisho, Pascal Magnussen, Birgitte Jyding Vennervald, Henrik Krarup, Pernille Kæstel, Julius Siza, Godfrey Kaatano, M Temu and H Friis *J. Nutr.* 137:2140-2146, September 2007 http://jn.nutrition.org/cgi/content/full/137/9/2140
- 202. Alcohol consumption and smoking habits as determinants of blood lead levels in a national population sample from Germany Weyermann, M and Brenner, H *Arch-Environ-Health. 1997 May-Jun; 52(3): 233-9* http://grande.nal.usda.gov/ibids/index.php?mode2=detail&origin=ibids_references&therow=107745
- 203. Factors influencing the difference between maternal and cord blood lead Harville,EW Hertz-Picciotto,I Schramm,M Watt-Morse,M Chantala,K Osterloh,J Parsons,PJ Rogan,W Occupational and Environmental Medicine Online http://oem.bmj.com/cgi/reprint/62/4/263
- 204. **Calcium: effect of different amounts on nonheme and heme-iron absorption in humans** Leif Hallberg, Mats Brune, Martine Erlandsson, A-S Sandberg, and L Rossander-Hult *Am J Clin Nutr 1991;53: 112-19*. www.ajcn.org/cgi/reprint/53/1/112
- 205. Calcium Intake Is Weakly but Consistently Negatively Associated with Iron Status in Girls and Women in Six European Countries L.P.L. van de Vijver, A.F.M. Kardinaal, J. Charzewska, M. Rotily, P. Charles, M. Maggiolini, S. Ando, K. Va¨ a¨ na¨ nen, B. Wajszczyk, J. Heikkinen, A. Deloraineand G. Schaafsma *J Nutr 1999;129:963-968*. http://jn.nutrition.org/cgi/reprint/129/5/963
- 206. Initial uptake and absorption of nonheme iron and absorption of heme iron in humans are unaffected by the addition of calcium as cheese to a meal with high iron bioavailability Zamzam K (Fariba) Roughead, CA Zito and JR Hunt Am J Clin Nutr, Vol. 76, No. 2, 419-425, Aug 2002 www.ajcn.org/cgi/content/full/76/2/419
- 207. **Iron absorption in breast-fed infants: effects of age, iron status, iron supplements, and complementary foods** Magnus Domellöf, Bo Lönnerdal, Steven A Abrams and Olle Hernell *Am J Clin Nutr, Vol. 76, No. 1, 198-204, July 2002* www.ajcn.org/cgi/content/full/76/1/198
- 208. **Cow's milk consumption and iron deficiency anemia in children** Maria A. A. OliveiraI; Mônica M. Osório *J. Pediatr. (Rio J.) vol.81 no.5 Porto Alegre Sept./Oct. 2005 <u>www.scielo.br/scielo.php?pid=S0021-75572005000600004&script=sci_arttext&tlng=en</u>*
- 209. **Soy protein, phytate, and iron absorption in humans** Richard F Hurrell, Marcel-A Juillerat, Manju B Reddy, Sean R Lynch, Sandra A Dassenko, and James D Cook *Am J Clin Nutr 1992:56:573-8.* www.ajcn.org/cgi/reprint/56/3/573
- 210. **In Vitro Estimation of Iron Availability in Meals Containing Soy Products** Brian R. Schricker, Dennis D. Miller And Darrell Van Campen *J. Nutr.112: 1696-1705, 1982.* http://jn.nutrition.org/cgi/reprint/112/9/1696
- **211. Effect of soy protein on nonheme iron absorption in man** Leif Hallberg and Lena Rossander *Am J Clin Nutr* 36: September 1982, *Pp 5 14-520.* www.ajcn.org/cgi/reprint/36/3/514
- 212. **Effect of traditional oriental soy products on iron absorption** Bruce J Macfarlane, William B van der Riet, Thomas H Bothwell, Roy D Baynes, David Siegenberg, Uta Schmidt, Anat Tal, John RN Taylor, and Fatima Mayet Am J Clin Nutr 1990;5 1:873-80. www.ajcn.org/cgi/reprint/51/5/873
- 213. **Promotive effect of Shoyu polysaccharides from soy sauce on iron absorption in animals and humans** Kobayashi, Makio; Nagatani, Y; Magishi, N; Tokuriki, N; Nakata, Y; Tsukiyama, R; Imai, H; Suzuki, M; Saito, M; Tsuji, K *Int J Mol Med 2006-Dec; vol 18 (issue 6): pp 1159-63 www.find-health-articles.com/rec_pub_17089021*
- 214. **Food Safety and Toxicity** John De Vries *CRC Press* 1997 http://books.google.com/books?id=ag4z1Pp9cLAC&pg
- 215. The influence of different protein sources on phytate inhibition of nonheme-iron absorption in humans Manju B Reddy, Richard F Hurrell, Marcel A Juillerat, and JD Cook *Am J Clin Nutr Feb 1996;63:203-7*. www.ajcn.org/cgi/reprint/63/2/203
- 216. Iron deficiency due to consumption of a habitual diet low in bioavailable iron: a longitudinal cohort study in Moroccan children Michael B Zimmermann, Nourredine Chaouki, and Richard F Hurrell Am J Clin Nutr, Vol. 81, No. 1, 115-121, January 2005 www.ajcn.org/cgi/reprint/81/1/115
- 217. Phytate degradation determines the effect of industrial processing and home cooking on iron absorption from cereal-based foods Richard F. Hurrell, Manju B. Reddy, Joseph Burri and James D. Cook *Br J Nutr* (2002), 88, 117–123 http://journals.cambridge.org/download.php?file=%2FBJN%2FBJN88 02%2FS00071
- 218. Cooking and Fe Fortification Have Different Effects on Fe Bioavailability of Bread and Tortillas Miguel Herna´ndez,, Virginia Sousa, Salvador Villalpando, Ambar Moreno,Irene Montalvo, Mardya Lo´pez-Alarco´n *J Am Col Nutr, Vol.* 25, No. 1, 20-25 (2006) www.jacn.org/cgi/reprint/25/1/20
- 219. **Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages** Richard F. Hurrell, Manju Reddy and James D. Cook *Br J Nutr (1999), 81, 289–295* http://journals.cambridge.org/download.php?file=%2FBJN%2FBJN81_04%2FS00071
- 220. **Inhibition of food iron absorption by coffee** Timothy A Morck, Sean A Lynch, James D Cook *Am J Clin Nutr* 1983;73:416-420 www.ajcn.org/cgi/reprint/37/3/416
- 221. **Tea drinking and microcytic anemia in infants** H Merhav, Y Amitai, H Palti and S Godfrey *Am J Clin Nutr, Vol 41, 1210-1213, 1985* www.ajcn.org/cgi/content/abstract/41/6/1210

- 222. Clinical trial on the effect of regular tea drinking on iron accumulation in genetic haemochromatosis J P Kaltwasser, E Werner, K Schalk, C Hansen, R Gottschalk and C Seidl *Gut Nov 1998;43;699-704* http://gut.bmj.com/cgi/reprint/43/5/699
- 223. **Tea consumption and iron status** E H M Temme and P G A Van Hoydonck *European Journal of Clinical Nutririon May* 2002, *Volume 56, Number 5, Pages 379-386* www.nature.com/ejcn/journal/v56/n5/full/1601309a.html
- 224. Effects of discontinuing coffee intake on iron status of iron deficient Guatemalan toddlers: a randomized intervention study Kathryn G Dewey, Maria Eugenia Romero-Abal, Julieta Quan de Serrano, Jesus Bulux, Janet M Peerson, Patrice Engle, and NW Solomons *Am J Clin Nutr 1997;66:168-76*. www.ajcn.org/cgi/reprint/66/1/168.pdf
- 225. **Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption** David Siegenberg, Roy D Baynes, Thomas H Bothwell, BJ Macfarlane, RD Lamparelli, NG Car, P MacPhail, U Schmidt, A Ta!, and F Mayet *Am J Clin Nuir 1991;53:537-41 Feb 1991* www.ajcn.org/cgi/reprint/53/2/537
- 226. **Proline-Rich Proteins Moderate the Inhibitory Effect of Tea on Iron Absorption in Rats** Hee-Seon Kim and Dennis D. Miller *J. Nutr. 135: 532-537, March 2005.* http://jn.nutrition.org/cgi/reprint/135/3/532
 - 227. Polyphenol Wikipedia http://en.wikipedia.org/wiki/Polyphenol
 - 228. Oxalic acid Wikipedia http://en.wikipedia.org/wiki/Oxalic acid
 - 229. Oxalic Acid and Foods Growing Taste http://growingtaste.com/oxalicacid.shtml
- 230. Comparison of Iron Absorption Inhibited Substances in Local Thai Vegetables Winus Puminat Kasetsart J. (Nat. Sci.) 37: 197 201 (2003) http://kasetsartjournal.ku.ac.th/kuj_files/2008/A0804291039593984.pdf
- 231. **Relationship of Components in Wheat Bran and Spinach to Iron Bioavailability in the Anemic Rat** Dennis T. Gordon and Lucia S. Chao *J. Nutr. 114: 526-535, 1984.* http://jn.nutrition.org/cgi/reprint/114/3/526
- 232. Oxalic acid does not influence nonhaem iron absorption in humans: a comparison of kale and spinach meals S Storcksdieck genannt Bonsmann, T Walczyk, S Renggli and R F Hurrell *EJCN* (2008) 62, 336-341; www.nature.com/ejcn/journal/v62/n3/abs/1602721a.html
- 233. **Bioavailability Algorithms in Setting Recommended Allowances: Lessons from Iron, Applications to Zinc** Janet R. Hunt *J. Nutr. 126: 2345S-2353S, 1996.* http://jn.nutrition.org/cgi/reprint/126/9 Suppl/2345S.pdf
- 234. Prediction of dietary iron absorption: an algorithm for calculating absorption and bioavailability of dietary iron Leif Hallberg and Lena Hulthén *Am J Clin Nutr, Vol. 71, No. 5, 1147-1160, May 2000* www.ajcn.org/cgi/content/full/71/5/1147
- 235. Nutritional effect of including egg yolk in the weaning diet of breast-fed and formula-fed infants: a randomized controlled trial Maria Makrides, Joanna S Hawkes, Mark A Neumann and Robert A Gibson *Am J of Cl Nutr, Vol.* 75, No. 6, 1084-1092, June 2002 www.ajcn.org/cgi/content/full/75/6/1084
- 236. **Egg Allergy** Department of Allergy, Immunology and Infectious diseases Sydney Children's Hospital www.sch.edu.au/health/factsheets/joint/?egg_allergy.htm
- 237. Dietary Copper Deficiency Reduces Iron Absorption and Duodenal Enterocyte Hephaestin Protein in Male and Female Rats Philip G. Reeves, Lana C. S. DeMars, W. Thomas Johnson and Henry C. Lukaski *J. Nutr. 135:92-98, January 2005 http://jn.nutrition.org/cgi/content/full/135/1/92*
- 238. Signs of Iron Deficiency in Copper-deficient Rats Are Not Affected by Iron Supplements Administered by Diet or by Injection Reeves, Phillip and Demars, Lana *Journal of Nutritional Biochemistry Sepr 1, 2006* http://www.ars.usda.gov/research/publications/publications.htm [address does not permit hyperlink form authors machine]
- 239. **Copper** Jane Higdon *Micronutrient Information Center, Linus Pauling Institute, Oregon State University* http://lpi.oregonstate.edu/infocenter/minerals/copper/
- 240. **Inhibition of iron and copper uptake by iron, copper and zinc** Miguel Arredondo, Ronny Martínez , Marco T. Núñez, Manuel Ruz And Manuel Olivares *Biol Res 39: 95-102, 2006* www.scielo.cl/pdf/bres/v39n1/art11.pdf
- 241. **Zinc** Jane Higdon *Micronutrient Information Center, Linus Pauling Institute, Oregon State University* http://lpi.oregonstate.edu/infocenter/minerals/zinc/
- 242. Cupric Oxide Should Not Be Used As a Copper Supplement for Either Animals or Humans David H. Baker *Journal of Nutrition*. 1999;129:2278-2279. http://jn.nutrition.org/cgi/content/full/129/12/2278
- 243. **Element of caution: a case of reversible cytopenias associated with excessive zinc supplementation** Julie A. Irving, Andre Mattman, Gillian Lockitch, Kevin Farrell and Louis D. Wadsworth *CMAJ July* 22, 2003; 169 (2) www.cmaj.ca/cgi/content/full/169/2/129
- 244. **Iron and copper, and their interactions during development** Lorraine Gambling, Henriette S. Andersen and HJ McArdle *Biochemical Society Transactions* (2008) *Vol 36*, *part 6* <u>www.biochemsoctrans.org/bst/036/1258/0361258.pdf</u>
- 245. Non-Anemic Iron Depletion, Oral Iron Supplementation and Indices of Copper Status in College-Aged Females Sareen S. Gropper, Michele Bader-Crowe, Lisa S. McAnulty, Douglas White, and Robert E. Keith *J American College of Nutrition, Vol. 21, No. 6, 545-552 (2002)* www.jacn.org/cgi/content/full/21/6/545
- 246. Interactive effects of iron and zinc on biochemical and functional outcomes in supplementation trials Christa F Walker, K Kordas, RJ Stoltzfus and RE Black *Am J Cl Nutr, Vol. 82, No. 1, 5-12, July 2005* www.ajcn.org/cgi/content/full/82/1/5

- 247. Concurrent repletion of iron and zinc reduces intestinal oxidative damage in iron- and zinc-deficient rats Sreedhar Bodiga, Madhavan Nair Krishnapillai *World J Gastroenterol* 2007; 13(43): 5707-5717 www.wjgnet.com/1007-9327/13/5707.asp
- 248. Iron Absorption Is More Closely Related to Iron Status Than to Daily Iron Intake in 12- to 48-Mo-Old Children Mary Frances Lynch, Ian J. Griffin, Keli M. Hawthorne, Zhensheng Chen, Maria G. Hamzo and Steven A. Abrams *J. Nutr.* 137: 88-92, 2007. http://jn.nutrition.org/cgi/reprint/137/1/88.pdf
- 249. **Inhibition of zinc absorption by iron depends on their ratio** Peres, J M; Bureau, F; Neuville, D; Arhan, P; Bougle, D *J-Trace-Elem-Med-Biol.* 2001; 15(4): 237-41 www.sciencedirect.com/science?ob=ArticleURL&udi=B7GJC-4GWPPSG-6
- 250. **Iron and zinc interactions among pregnant Nepali women** P.Christian *Nutrition Research, Volume 21, Issue 1, Pages 141-148* http://linkinghub.elsevier.com/retrieve/pii/S0271531700002566
- 251. The Levels of Calcium and Zinc that Are Found Naturally in Foods or in Calcium-Fortified Foods Do Not Affect Iron Absorption Penelope Nestel and Ritu Nalubola *ILSI* www.geocities.com/tiger_angie/ironcalc.pdf
- 252. **Effect of high-dose iron supplements on fractional zinc absorption and status in pregnant women** Linda J Harvey, Jack R Dainty, Wendy J Hollands, Victoria J Bull, Jurien A Hoogewerff, Robert J Foxall, L McAnena, JJ Strain, and SJ Fairweather-Tait *Am J Clinl Nutr, Vol. 85, No. 1, 131-136, January 2007* www.ajcn.org/cgi/reprint/85/1/131
- 253. Combined Iron and Zinc Supplementation in Infants Improved Iron and Zinc Status, but Interactions Reduced Efficacy in a Multicountry Trial in Southeast Asia Frank T. Wieringa, Jacques Berger, Marjoleine A. Dijkhuizen, Adi Hidayat, N X. Ninh, B Utomo, E Wasantwisut, and P Winichagoon *The Journal of Nutrition 137 (2): 466. (2007)* http://jn.nutrition.org/cgi/reprint/137/2/466
- 254. **Micronutrient interactions: effects on absorption and bioavailability** Brittmarie SandstroÈm British Journal of Nutrition (2001), 85, Suppl. 2, S181±S185 http://journals.cambridge.org/download.php?file=%2FBJN%2FBJN85_S2%2FS000711450100109Xa.pdf&code=8fa23a52c05c78cc50aadfcbedad50cd
- 255. **Iron supplements inhibit zinc but not copper absorption in vivo in ileostomy subjects** Freddy J Troost, Robert-Jan M Brummer, Jack R Dainty, Jurian A Hoogewerff, Vicky J Bull, and Wim HM Saris *Am J Clin Nutr, Vol.* 78, *No.* 5, 1018-1023, November 2003 www.ajcn.org/cgi/content/full/78/5/1018
- 256. **Iron and zinc interactions in humans** Paul Whittaker *Am J Clin Nutr 1998;68(suppl):442S-6S.Aug 1998* www.ajcn.org/cgi/reprint/68/2/442S
- 257. Supplementation with zinc between meals has no effect on subsequent iron absorption or on iron status of Chilean women D. Lopez de Romaña, M. Ruz, F. Pizarro, L. Landeta, M. Olivares *Nutrition, Volume 24, Issue 10, Pages 957-963 October 2008* http://linkinghub.elsevier.com/retrieve/pii/S0899900708002086
- 258. **Competitive inhibition of iron absorption by manganese and zinc in humans** Lena Rossander-Hulten, Mats Brune, Britimarie Sandstrom, Bo Lonnerdal, and Leif Hallberg *Am J Clin Nutr 1991;54:l52-6.* www.ajcn.org/cgi/reprint/54/1/152
- 259. **Manganese** Jane Higdon *Micronutrient Information Center, Linus Pauling Institute, Oregon State University* http://lpi.oregonstate.edu/infocenter/minerals/manganese/
- 260. Haematological response to haem iron or ferrous sulphate mixed with refried black beans in moderately anaemic Guatemalan pre-school children K Schu'mann, ME Romero-Abal, AMa''urer, T Luck, J Beard, L Murray-Kolb, J Bulux, I Mena and NW Solomons *Public Health Nutrition:* 8(6), 572–581 http://journals.cambridge.org/action/displayFulltext?type=1&fid=631656&jid=PHN&volumeId=8&issueId=06&aid=582216
- Adjustment of Iron Intake for Dietary Enhancers and Inhibitors in Population Studies: Bioavailable Iron in Rural and Urban Residing Russian Women and Children Marilyn Tseng, Hrishikesh Chakraborty, David T. Robinson, Michelle Mendez and Lenore Kohlmeier *The Journal of Nutrition Vol 127 No 8 1997* http://jn.nutrition.org/cgi/reprint/127/8/1456
- 262. **Iron supplementation in early childhood: health benefits and risks** Lora L Iannotti, James M Tielsch, Maureen M Black and Robert E Black *American Journal of Clinical Nutrition, Vol. 84, No. 6, 1261-1276, December 2006* www.ajcn.org/cgi/reprint/84/6/1261
- 263. **Iron Deficiency, but Not Anemia, Upregulates Iron Absorption in Breast-Fed Peruvian Infants** Penni D. Hicks, Nelly Zavaleta, Zhensheng Chen, Steven A. Abrams and Bo Lönnerdal *J. Nutr. 136:2435-2438*, *September 2006* http://jn.nutrition.org/cgi/content/full/136/9/2435
- 264. Iron Supplementation Affects Growth and Morbidity of Breast-Fed Infants: Results of a Randomized Trial in Sweden and Honduras Kathryn G. Dewey, Magnus Domellöf, Roberta J. Cohen, LL Rivera, O Hernell and B Lönnerdal J. Nutr. 132:3249-3255, Nov 2002 http://jn.nutrition.org/cgi/content/full/132/11/3249
- 265. **Iron supplements might harm infants who have enough** *e!Science News* http://esciencenews.com/articles/2008/05/05/iron.supplements.might.harm.infants.who.have.enough
- 266. Neurodevelopmental Delays Associated With Iron-Fortified Formula for Healthy Infants Martha Kerr Cidpusa Foundation www.cidpusa.org/fortified%20food.htm
- 267. **Iron supplementation of breastfed infants from an early age** Ekhard E Ziegler, Steven E Nelson, and Janice M Jeter *Am J Clin Nutr* 89: 525-532, 2009. www.ajcn.org/cgi/content/abstract/89/2/525

- 268. Iron supplement use and iron status among US adults: results from the third National Health and Nutrition Examination Survey Heidi Michels Blanck, Mary E Cogswell, Cathleen Gillespie and Michele Reyes Am J Clin Nutr, Vol. 82, No. 5, 1024-1031, November 2005 www.ajcn.org/cgi/content/full/82/5/1024
- 269. **Does maternal iron supplementation during the lactation period affect iron status of exclusively breast-fed infants?** Ali Baykan, S. Songül Yalçın, Kadriye Yurdakök *The Turkish Journal of Pediatrics* 2006, *Volume* 48, *Number* 4, *Page(s)* 301-307 http://tip.dergisi.org/text.php3?id=357
- 270. **Iron status in exercising women: the effect of oral iron therepy vs increased consumption of muscle foods** Roseann M Lyle, CM Weaver, DA Sedlock, S Rajaram, B Martin and CL Medley *Am J Clin Nutr* 1992:56:1049-55 www.ajcn.org/cgi/reprint/56/6/1049
- 271. Efficacy and tolerability of low-dose iron supplements during pregnancy: a randomized controlled trial Maria Makrides, Caroline A Crowther, Robert A Gibson, Rosalind S Gibson, and C *Murray Skeaff Am JClin Nutr, Vol. 78, No. 1, 145-153, July 2003* www.ajcn.org/cgi/reprint/78/1/145
- 272. Iron prophylaxis during pregnancy How much iron is needed? A randomized dose– response study of 20–80 mg ferrous iron daily in pregnant women Nils Milman, Thomas Bergholt, Lisbeth Eriksen, Keld-Erik Byg, Niels Graudal, Palle Pedersen and Jens Hertz *Acta Obstet Gynecol Scand* 2005 Mar;84(3):238-47. www.ncbi.nlm.nih.gov/pubmed/15715531?dopt=Abstract
- 273. Once-Weekly and 5-Days a Week Iron Supplementation Differentially Affect Cognitive Function but Not School Performance Rassamee Sungthong, Ladda Mo-suwan, Virasakdi Chongsuvivatwong and Alan F. Geater *J. Nutr.* 134:2349-2354, September 2004 http://jn.nutrition.org/cgi/reprint/134/9/2349
- 274. **A community-based randomized controlled trial of iron and zinc supplementation in Indonesian infants: interactions between iron and zinc** Torbjörn Lind, Bo Lönnerdal, Hans Stenlund, D Ismail, R Seswandhana, E-C Ekström, and L-Å Persson *Am J Clin Nutr* 2003;77:883–90. <u>www.ajcn.org/cgi/reprint/77/4/883.pdf</u>
- 275. **Iron and zinc supplementation promote motor development and exploratory behavior among Bangladeshi infants** Maureen M Black, Abdullah H Baqui, K Zaman, LA Persson, S El Arifeen, K Le, SW McNary, M Parveen, JD Hamadani and RE Black *Am J Clin Nutr, Vol. 80, No. 4, 903-910, Oct 2004* www.ajcn.org/cgi/content/full/80/4/903
 - **276. Iron Supplementation and the Female Soldier** Johnson, Anthony E
- 277. **Iron Supplementation in Athletes First Do No Harm** Heinz Zoller and Wolfgang Vogel *Nutrition* 20:615–619, *April* 2004 www.idpas.org/pdf/3191IronSupplementationForAthletes.pdf
- 278. **Body iron metabolism and pathophysiology of iron overload** Yutaka Kohgo, Katsuya Ikuta, Takaaki Ohtake, Yoshihiro Torimoto, Junji Kato *Int J Hematol* (2008) 88:7–15 www.springerlink.com/content/324238m67285n133/fulltext.pdf
- 279. **Evaluation of Iron Deficiency As a Nutritional Adaptation to Infectious Disease: An Evolutionary Medicine Perspective** Katherine Wander, Bettina Shell-Duncan, And Thomas W. Mcdade *American Journal Of Human Biology 00:000–000 (2009)* http://depts.washington.edu/anthweb/people/grad students/Wander2008b.pdf
- 280. Zinc And Iron Supplementation And Malaria, Diarrhea, And Respiratory Infections In Children In The Peruvian Amazon Stephanie A. Richard, Nelly Zavaleta, Laura E. Caulfield, RE Black, RS Witzig, And AH Shankar Am J of Trop Med and Hygiene 75(1), 2006, pp. 126–132 www.ajtmh.org/cgi/reprint/75/1/126
- 281. **Iron Deficiency and Malaria among Children Living on the Coast of Kenya** Alice M. Nyakeriga, Marita Troye-Blomberg, Jeffrey R. Dorfman, ND Alexander, R Ba¨ck, M Kortok, A K. Chemtai, K Marsh, and TN Williams *The Journal of Infectious Diseases* 2004; 190:439–47 www.journals.uchicago.edu/doi/pdf/10.1086/422331
- 282. <u>Safe Upper Levels for Vitamins and Minerals</u> Expert Group on Vitamins and Minerals UK May 2003 www.food.gov.uk/multimedia/pdfs/vitmin2003.pdf
- 283. Vitamin C Requirements: Optimal Health Benefits Vs Overdose Ronald Roth *Acu-Cell* www.acu-cell.com/vitc.html
- 284. **Nutrition Fact Sheet: Vitamin C** Feinberg School of Medicine, Northwestern University www.feinberg.northwestern.edu/nutrition/factsheets/vitamin-c.html
- 285. **Micronutrient Information Center: Vitamin** C Linus Pauling Institute, Oregon State University http://lpi.oregonstate.edu/infocenter/vitamins/vitamins/vitamins/
- 286. **Iron and Oxidative Stress in Pregnancy** Esther Casanueva and Fernando E. Viteri *J. Nutr. 133: 1700S–1708S*, 2003 http://jn.nutrition.org/cgi/reprint/133/5/1700S
- 287. **Intermittent Iron Supplementation Regimens Are Able to Maintain Safe Maternal Hemoglobin Concentrations during Pregnancy** Juan P. Pena-Rosas, Malden C. Nesheim, Maria N. Garcia-Casal, D.W.T. Crompton,D Sanjur, FE Viteri, EA Frongillo, and P Lorenzana *J Nutr 134 (5): 1009 (2004)* http://jn.nutrition.org/cgi/reprint/134/5/1099
- 288. **Effectiveness and strategies of iron supplementation during pregnancy** John L Beard *Am J Clin Nutr* 2000;71(suppl):1288S–94S. <u>www.ajcn.org/cgi/reprint/71/5/1288S</u>
- **289.** Adaptation in iron absorption: iron supplementation reduces nonheme-iron but not heme-iron absorption from food Zamzam K Roughead and Janet R. Hunt *Am J Clin Nutr* 2000;72:982–9. www.ajcn.org/cgi/reprint/72/4/982
- 290. True Absorption and Retention of Supplemental Iron Is More Efficient When Iron Is Administered Every Three Days Rather than Daily to Iron-Normal and Iron-Deficient Rats Fernando E. Viteri, Liu Xunian , Karen Tolomei And Antonio Martin *Journal of Nutrition 1995 0022-3166/95* http://jn.nutrition.org/cgi/reprint/125/1/82

- 291. **Effectiveness of daily and weekly iron supplementation in the prevention of anemia in infants** Elyne Montenegro Engstrom, Inês Rugani Ribeiro de Castro, Margareth Portela, Letícia Oliveira Cardoso, Carlos Augusto Monteiro *Rev Saúde Pública 2008;42(5)* www.scielo.br/pdf/rsp/v42n5/en_6967.pdf
- 292. **Daily Iron Supplementation Is More Efficacious than Twice Weekly Iron Supplementation for the Treatment of Childhood Anemia in Western Kenya** Meghna R. Desai, Ritesh Dhar, Daniel H. Rosen, Simon K. Kariuki, Ya Ping Shi,Piet A. Kager, and Feiko O. ter Kuile *J. Nutr. 134:1167-1174, May 2004* http://jn.nutrition.org/cgi/reprint/134/5/1167
- 293. Effect of daily or weekly multiple-micronutrient and iron foodlike tablets on body iron stores of Indonesian infants aged 6–12 mo: a double-blind, randomized, placebo-controlled trial Maria Wijaya-Erhardt, Juergen G Erhardt, Juliawati Untoro, El Karyadi, L Wibowo and R Gross *Am J Clin Nutr Vol. 86, No. 6, 1680-1686, Dec 2007* www.ajcn.org/cgi/content/full/86/6/1680
- 294. **Do We need daily Iron Supplementation? Comments and Controversies** A.Jaleel, I. A. Siddiqui, M.A. Rahman *Journal of Pakistan Medical Association* http://jpma.org.pk/ViewArticle/ViewArticle.aspx?ArticleID=120
- 295. Comparisons of the Effectiveness of Weekly and Daily Iron Supplementation in 6 to 24 Month Old Babies in Urban Health Centres of Sari, Iran M.Khademloo, H.Karamari, A.Ajami and M. Yasari *Pakistan Journal of Biological Sciences* 12(2): 195-197, 2009 www.scialert.net/gredirect.php?doi=pibs.2009.195.197&linkid=pdf
- 296. Intermittent administration of iron and sulfadoxinepyrimethamine to control anaemia in Kenyan children: a randomised controlled trial Hans Verhoef, Clive E West, Silas M Nzyuko, Stefan de Vogel, Rikkert van der Valk, Mike A Wanga, Anneleen Kuijsten, Jacobien Veenemans, Frans J Kok *THE LANCET Vol 360 September 21, 2002* www.thelancet.com/journals/lancet/article/PIIS0140-6736(02)11027-0/abstract
- 297. **Efficacy of Twice Weekly Iron Supplementation in Anemic Adolescent Girls** S. Shobha and D. Sharada *Indian Pediatrics* 2003; 40:1186-1190 www.intensivenutrition.com/Intensive%20Nutrition/anemicgirls.pdf
- 298. **Weekly Iron as a Safe Alternative to Daily Supplementation for Nonanemic Pregnant Women** E. Casanueva, F. Viteri, M. Mares-Galindo, C. Meza-Camacho, A. Loría, L. Schnaas, R. Valdés-Ramos *Archives of Medical Research, Volume 37, Issue 5, Pages 674-682* www.arcmedres.com/article/S0188-4409(06)00043-9/abstract
- 299. **Hemochromatosis and Iron-Overload Screening in a Racially Diverse Population** Paul C. Adams, David M. Reboussin, James C. Barton, Christine E McLaren, JH Eckfeldt, GD McLaren, FW Dawkins, RT Acton, EL Harris, VR Gordeuk, C Leiendecker-Foster, M Speechley, BM Snively, JL Holup, E Thomson, and P Sholinsky *N Engl J Med* 2005;352:1769-78 http://content.nejm.org/cgi/reprint/352/17/1769.pdf
- 300. **Iron And Bacterial Virulence** M Sritharan Indian Journal of Medical Microbiology 2006;24:163-4. www.ijmm.org/article.asp?issn=0255-0857
- 301. **Host-Pathogen Interactions: The Role of Iron** Conor P. Doherty *J. Nutr. 137:1341-1344, May 2007* http://jn.nutrition.org/cgi/content/full/137/5/1341
- 302. **Iron Loading and Disease Surveillance** Eugene D. Weinberg www.medicardium.com/The%20role%20of%20iron%20in%20cancer%20and%20infections.htm
- 303. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial Sunil Sazawal, Robert E Black, Mahdi Ramsan, HM Chwaya, RJ Stoltzfus, A Dutta, U Dhingra, I Kabole, S Deb, MK Othman, FM Kabole *The Lancet Volume 367, issue 9505 p 133 143* www.thelancet.com/journals/lancet/article/PIIS0140-6736(06)67962-2/fulltext
- 304. **Relation between iron stores and non-insulin dependent diabetes in men: case-control study** Jukka T Salonen, Tomi-Pekka Tuomainen, Kristiina Nyyssönen, Hanna-Maaria Lakka and Kari Punnonen *BMJ VOLUME 317 12 SEPTEMBER 1998* www.bmj.com/cgi/reprint/317/7160/727
- 305. **Body Iron Stores in Relation to Risk of Type 2 Diabetes in Apparently Healthy Women** Rui Jiang, JoAnn E. Manson, James B. Meigs, Jing Ma, Nader Rifai, Frank B. Hu *JAMA*, *February 11*, 2004—Vol 291, No. 6 http://jama.ama-assn.org/cgi/reprint/291/6/711
- 306. **The Role of Iron in Diabetes and Its Complications** Sundararaman Swaminathan, Vivian A. Fonseca, Muhammad G. Alam, Sudhir V. Shah *Diabetes Care 30:1926-1933*, 2007 http://care.diabetesjournals.org/cgi/content/full/30/7/1926
- 307. Iron and Copper Toxicity in Diseases of Aging, Particularly Atherosclerosis and Alzheimer"s Disease George J. Brewer Experimental Biology and Medicine 232:323–335, 2007 www.ebmonline.org/cgi/reprint/232/2/323
- 308. **Reducing Iron Levels Does Not Improve CV Risk in High-Risk Patients** Steve Stiles *Medscape Heartwire* www.medscape.com/viewarticle/552227
- 309. Excessive Body Iron Stores Are Not Associated with Risk of Coronary Heart Disease in Women Qi Sun, Jing Ma, Nader Rifai, Oscar H. Franco, Kathryn M. Rexrode and Frank B. Hu *Journal of Nutrition, Vol. 138, No. 12*, 2436-2441, December 2008 http://jn.nutrition.org/cgi/content/abstract/138/12/2436
- 310. Iron, zinc, and alcohol consumption and mortality from cardiovascular diseases: the Iowa Women's Health Study Duk-Hee Lee, Aaron R Folsom and David R Jacobs, Jr Am J Clinl Nutr, Vol. 81, No. 4, 787-791, April 2005 www.ajcn.org/cgi/content/abstract/81/4/787
- 311. **Serum Ferritin Is a Risk Factor for Stroke in Postmenopausal Women** Daphne L. van der A, , Diederick E. Grobbee, Mark Roest, Joannes J.M. Marx, ; Hieronymus A. Voorbij, Yvonne T. van der Schouw *Stroke 2005;36;1637-1641* http://stroke.ahajournals.org/cgi/reprint/36/8/1637

- 312. **Iron, Lipids, and Risk of Cancer in the Framingham Offspring Cohort** Arch G. Mainous III, Brian J. Wells, Richelle J. Koopman, Charles J. Everett, and James M. Gil *Am Journal of Epidemiology 2005;161:1115–1122* http://aje.oxfordjournals.org/cgi/reprint/161/12/1115
- 313. **Dietary Iron and Heme Iron Intake and Risk of Breast Cancer: A Prospective Cohort Study** Geoffrey C. Kabat, Anthony B. Miller, Meera Jain, and Thomas E. Rohan *Cancer Epidemiol Biomarkers Prev 2007; 16(6). June 2007* http://cebp.aacrjournals.org/cgi/reprint/16/6/1306
- 314. Cholesterol, Transferrin Saturation, and the Development of Dementia and Alzheimer"s Disease: Results From an 18-year Population-based Cohort Arch G. Mainous III; Stephanie L. Eschenbach; Brian J. Wells, CJ Everett,; JM Gill Family Medicine January 2005 www.stfm.org/fmhub/fm2005/January/Arch36.pdf
- 315. **Iron Status and Risk of Cancers in the SU.VI.MAX Cohort** Serge Hercberg, Carla Estaquio, Sébastien Czernichow, L Mennen, N Noisette, S Bertrais, J-C Renversez, S Briançon, A Favier, and P Galan *J. Nutr.* 135:2664-2668, November 2005 http://jn.nutrition.org/cgi/content/full/135/11/2664
- 316. Interaction Among Heme Iron, Zinc, and Supplemental Vitamin C Intake on the Risk of Lung Cancer: Iowa Women's Health Study Duk-Hee Lee; David R. Jacobs Jr Cancer and Nutrition, Volume 52, Issue 2 July 2005, p130-137 www.informaworld.com/smpp/content-content=a785829366~db=all
- 317. **Heme Iron, Zinc, Alcohol Consumption, and Colon Cancer: Iowa Women"s Health Study** Duk-Hee Lee, Kristin E. Anderson, Lisa J. Harnack, Aaron R. Folsom, David R. Jacobs, Jr. *Journal of the National Cancer Institute, Vol. 96, No. 5, March 3, 2004* http://jnci.oxfordjournals.org/cgi/reprint/96/5/403
- 318. Dietary iron intake and breast cancer: The Iowa Women"s Heath Study. Duk-Hee Lee, KE Anderson, LJ Harnark and DR Jacobs, Jr Proc Amer Assoc Cancer Res, Volume 45, 2004 http://aacrmeetingabstracts.org/cgi/content/abstract/2004/1/535-c
- 319. Cancer as a Ferrotoxic Disease: Are We Getting Hard Stainless Evidence? Gustaf Edgren, Olof Nyrén, Mads Melbye Journal of the National Cancer Institute Vol. 100, Issue 14 July 16, 2008 http://jnci.oxfordjournals.org/cgi/reprint/100/14/976
- 320. **Dietary iron, zinc, calcium and the risk of lung cancer, a case-control study** Wei Zhou, Sohee Park, Geoffrey Liu, DP Miller, LI Wang, L Pothier, JC Wain, TJ Lynch, E Giovannucci and DC Christiani *Proc Amer Assoc Cancer Res, Volume 46*, 2005 www.aacrmeetingabstracts.org/cgi/content/abstract/2005/1/1364-a
- 321. **Dietary Iron, Zinc, and Calcium and the Risk of Lung Cancer.** Zhou, Wei; Park, Sohee; Liu, Geoffrey; Miller, David P.; Wang, Lisa I.; Pothier, Lucille; Wain, JC; Lynch, T; Giovannucci, E; Christiani, DC *Epidemiology*. 16(6):772-779, November 2005. www.epidem.com/pt/re/epidemiology/abstract.00001648-200511000-00010.htm
- 322. Cancer Incidence in Mormons and Non-Mormons in Utah, 1966-1970 Joseph L. Lyon, Melville R. Klauber, John W. Gardner and Charles R. Smart CA *Cancer J Clin 1983;33;309-316 Sep 1983* http://caonline.amcancersoc.org/cgi/reprint/33/5/309
- 323. Iron overload and cofactors with special reference to alcohol, hepatitis C virus infection and steatosis/insulin resistance Yutaka Kohgo, Katsuya Ikuta, Takaaki Ohtake, Yoshihiro Torimoto, Junji Kato World J Gastroenterol 2007 September 21; 13(35): 4699-4706 www.wjgnet.com/1007-9327/13/4699.pdf
- 324. **Heme and non-heme iron consumption and risk of gallstone disease in men** Chung-Jyi Tsai, Michael F Leitzmann, Walter C Willett and Edward L Giovannucci *Am J Clin Nutr, Vol. 85, No. 2, 518-522, Feb 2007* www.ajcn.org/cgi/content/abstract/85/2/518
- 325. **Vitamin C modulation of H2O2-induced damage and iron homeostasis in human cells** Tiago L. Duarte and George D. D. Jones https://lra.le.ac.uk/bitstream/2381/1121/1/Duarte%20and%20Jones%202007%20LRA.pdf
- 326. Iron status of the free-living, elderly Framingham Heart Study cohort: an iron-replete population with a high prevalence of elevated iron stores Diana J Fleming, Paul F Jacques, Katherine L Tucker, Joseph M Massaro, Ralph B D'Agostino, Sr, Peter WF Wilson and Richard J Wood *A J Clinl Nutr, Vol. 73, No. 3, 638-646, March 2001*www.ajcn.org/cgi/reprint/73/3/638
- 327. **Iron status of the Taiwanese elderly: the prevalence of iron deficiency and elevated iron stores** Jui-Line Wang and Ning-Sing Shaw http://apjcn.nhri.org.tw/server/APJCN/Volume14/vol14.3/fullArticles/Wang.pdf
- 328. Iron status in Danish men 1984-94: a cohort comparison of changes in iron stores and the prevalence of iron deficiency and iron overload. Milman N, Byg KE, Ovesen L, Kirchhoff M, Jürgensen KS. European Journal of Hematology Vol 68 Issue 6 p332-340 http://www3.interscience.wiley.com/journal/118954579/abstract
- 329. **Healthy Pregnant Women's Iron Intake Advice Too High** Diana Yee *Medical News Today* www.medicalnewstoday.com/articles/44345.php
- 330. Association of Elevated Serum Ferritin Levels and the Risk of Gestational Diabetes Mellitus in Pregnant Women: The Camden study XINHUA CHEN, THERESA O. SCHOLL, T. PETER STEIN DIABETES CARE, VOLUME 29, NUMBER 5, MAY 2006 http://care.diabetesjournals.org/cgi/reprint/29/5/1077
- 331. Third trimester iron status and pregnancy outcome in non-anemic women: pregnancy unfavourably affected by maternal iron excess T.T. Lao, K.-F. Tam and L.Y. Chan *Human Reproduction Vol15 No8* pp.1843-1848, 2000 http://humrep.oxfordjournals.org/cgi/reprint/15/8/1843
- 332. A Randomized Placebo-controlled Trial to Determine the Effect of Iron Supplementation on Pregnancy Outcome in Pregnant Women With Hemoglobin >13.2 g/dL. Ziaei, S; Norrozi, M; Faghihzadeh, S; Jafarbegloo, E Obstetrical & LEAD Action News Volume 9 Number 3 June 2009 Page 29 of 32

 $Gynecological \ Survey.\ 62(9):574-576,\ September\ 2007.\ \underline{www.obgynsurvey.com/pt/re/obgynsurv/abstract.00006254-200709000-00011.htm}$

- 333. The effects of iron supplementation on serum copper and zinc levels in pregnant women with high-normal hemoglobin Saeideh Ziaei, R. Janghorban, Sosan Shariatdoust, Sofhrate Faghihzadeh *International Journal Of Gynecology & Obstetrics Vol 100 Issue 2 October 4 2007* www.ijgo.org/article/S0020-7292(07)00517-6/abstract
- 334. The Plausibility of Micronutrient Deficiencies Being a Significant Contributing Factor to the Occurrence of Pregnancy Complications Carl L. Keen, Michael S. Clegg, LA Hanna, L Lanoue, JM Rogers, GP Daston, P Oteiza and JY Uriu-Adams J. Nutr. 133:1597S-1605S, May 2003 http://jn.nutrition.org/cgi/content/full/133/5/1597S
- 335. **Iron supplementation is it necessary for healthy pregnancy?** Sandra Elias *New Zealand College of Midwives Journal October* 2007 http://findarticles.com/p/articles/mii/6845/is/37/ai/n28467158/print
 - 336. Hookworm Wikipedia http://en.wikipedia.org/wiki/Hookworm
- 337. Hookworms, Malaria and Vitamin A Deficiency Contribute to Anemia and Iron Deficiency among Pregnant Women in the Plains of Nepal Michele L. Dreyfuss, Rebecca J. Stoltzfus, Jaya B. Shrestha, EK Pradhan, SC LeClerq, SK Khatry, SR Shrestha, J Katz, M Albonico and KP West, Jr. *Journal of Nutrition*. 2000;130:2527-2536 http://jn.nutrition.org/cgi/content/full/130/10/2527
- 338. Aspirin intake and the use of serum ferritin as a measure of iron status Am J Clin Nutr, Vol. 74, No. 2, 219-226 www.ajcn.org/cgi/content/full/74/2/219
- 339. **The Global Burden of Iron Deficiency** Suchitra Chinthapalli *The Lancet Student June 4th*, 2008 www.thelancetstudent.com/2008/06/04/the-global-burden-of-iron-deficiency/
- 340. What Proportion of Patients Referred to Secondary Care with Iron Deficiency Anemia Have Colon Cancer? Durgesh Raje, Hasan Mukhtar, Ayo Oshowo and Celia Ingham Clark *Diseases of the Colon and Rectum Volume* 50, Number 8 August 2007 www.springerlink.com/content/d464u3259425m603/
- 341. Enhancing Iron Bioavailability of Vegetables through Proper Preparation Principles and Applications Ray-Yu Yang and Sampson C S Tsou*J. International Cooperation 1 (1) (June 2006):107-119* www.moringanews.org/documents/ironD.pdf
 - 342. Top 10 Foods Highest in Vitamin C HealthAliciousNess www.healthaliciousness.com/articles/vitamin-C.php
 - 343. Danish Food Composition Data Base Ed. 7 Technical University of Denmark

www.foodcomp.dk/v7/fcdb_foodcomplist.asp?CompId=0050

344. Efficacy of Intermittent Iron Supplementation in the Control of Iron Deficiency Anaemia in Developing Countries An Analysis of Experience to Date George H. Beaton and George P. McCabe *The Micronutrient Initiative www.foodsecurity.gov.kh/docs/ENG/Cover.pdf*

Source Guide: A guide to the source content of the best citations

For an easy introduction to iron within the body sources 17 and 25 are recommended. Source 18 has some good charts, an effective summary of iron requirements from infancy to adulthood and interesting reflections on the meaning of IDA. Innvista's sheet on IDA (source 56) outlines the symptoms of IDA and provides an historical context. Source 40 has a good explanation of what iron test result mean (as does source 17 p9 for iron deficiency) and the progression from ID to IDA plus a discussion of iron enhancement strategies. For good short summaries of reasons why iron levels may be abnormal see sources 53,152 & 339.

Source 44 is a good and simple description of iron absorption though it does seem to miss a step: the iron conversion from FeIII to FeII in the intestine (sources 170 & 171). It is a dated general article that makes an interesting historical contrast to the far more technical 38 showing how quickly our understanding of the iron metabolism has evolved. For an exploration of the vital role of hepcidin the Ganz articles (123 & 124) are recommended. As to why hepcidin levels would increase in some athletes source 126 explains the connection between exercise, hepcidin levels and inflammation. The article on iron and the genetic effects of alcohol (196) is transformational finally explaining the high levels of iron and lead associated with alcohol consumption. The physiological impact is further discussed in source 323.

Women interested in reading about their iron requirements could start with source 19 (on adolescent female iron requirements). For iron requirements during pregnancy Bothwell's article (84) is thoroughly recommended. For a measured consideration of supplementation requirements during pregnancy sources 59,88,287,288,298 & 335 are all useful. Medical advice should be sought as the level of supplementation can be tailored to your iron status. Source 103 provides a clear outline of the maternal risk factors associated with iron deficiency in newborns.

For the risks and advantages to supplementing infants or children 262 provides a good starting point. Lozoff's study in Chile is a good cautionary tale: encouraging initial results (139) that had to be qualified (though not invalidated) by later outcomes (265,266). None the less this is a crucial period; sources 29 & 30

explain the key nature of iron in the first months of life. 142 & 30 give clear, if mildly technical, explanation of our understanding of iron and the developing brain.

For the impact of lead a good overview is provided by source 46 which contains excellent (if slightly dated) charts on the way lead interferes with the iron metabolism and red blood cell production. Source 45 which provides a good overview of research into iron and lead is unfortunately not only pay for view but has different copyright access in different jurisdictions; the address quoted gives access in the USA, if you live elsewhere you may have to search for the article separately. Source 48 (on neurotoxicity in children) is worth reading though some sections are technical while 49 (on metal neurotoxicity), while excellent, is too technical for most general readers.

For the impact of iron nutrition on lead toxicity source 118 from the CDC provides a good overview. Source 3 indicates fairly clearly which maternal nutrients have the biggest impacts on a newborn's lead levels. That reducing iron deficiency can reduce lead levels is demonstrated clearly by source 112. Source 7 demonstrates it is the iron deficiency that is the key while source while source 9 shows the importance of the severity of the iron deficiency. On the other hand Rosado article (120) demonstrates through a large study that no major blood lead change from iron level improvements can be expected where deficiency is not both widespread and deep; supplementing iron sufficient children whose primary exposure is not through ingestion has little effect.

In terms of maintaining your iron levels through diet the best sources are those that examine the whole diet. Source 85 demonstrates how big a difference an active tailoring of your diet can make though Figure 5 indicates how little difference it will make if you are already at or above the normal well nourished male's storage level (c.1000mg). The fact that an iron sufficient individual may need 4x the RDI to raise his iron storage significantly indicates how futile the effort could be even if it did not carry significant risks (268). Most women, however, routinely face low iron levels which can easily tip towards deficiency if stressed by events such as pregnancy, illness or increased blood loss. This tendency may have developed as a result of the vulnerability to acute infection in our African homeland (279) but it does not render the consequences less real. Source 130 demonstrates the cognitive cost of allowing this to occur while source 134 clearly demonstrates the emotional cost.

Sources 147 & 148 make interesting contrast in diet studies. They achieve comparable outcomes but reach different conclusions on the value of food intake versus iron supplements. Source 176 clearly identifies the dietary elements associated with higher long term iron levels (heme iron, supplemental iron, dietary but not supplementary vitamin C, and alcohol) while the finding that coffee but not tea is associated with lower iron levels provides intriguing circumstantial support for a rat study (226) that indicates saliva can be modified by regular tannin consumption.

Source 150 confirms the importance of vitamin C and meat in enhancing iron absorption while clearly establishing these two dietary components combined cannot outweigh the negative impact of phosphorus and phytate inhibition. How low inhibitors can reduce dietary iron absorption is demonstrated by source 216 which looks at the diets of Moroccan children. On the other hand the fact that removing coffee from the diet (224) can have little effect indicates that some inhibitors are already counterbalanced in some diets. The very mixed results on food acids in different studies (175) confirm the complexity of interactions that occur within and between foods.

From: The Lead Group Inc. PO Box 161 Summer Hill NSW Australia 2130

The Lead Education and Abatement Design Group Working to eliminate childhood and foetal lead poisoning by the year 2012 and to protect the environment from lead ABN 25 819 463 114

Subscription Form for LEAD Group Membership & Donation Form for LEAF (Lead Education and Abatement Fund)

All donations over \$2.00 are tax deductible. All subscription rates include GST

Please accept my membership application and/or donation:

 \$5.00 annual membership (non-corporate rate) 		
 \$132.00 annual membership (corporate rate) 	Please Print & Mail form & payment to:	
PAYMENT DETAILS:	The LEAD Group Inc.	
 Please find enclosed my cheque / money order for \$payable to: "The LEAD Group" being for membership 	PO Box 161 Summer Hill NSW 2130 Australia	
 Please find enclosed my cheque / money order for \$payable to: "LEAF" (Lead Education and Abatement Fund) being for a donation 	OR phone us with your credit card	
• Please charge the amount of \$ to my • Visa Card Master Card (tick one) payable to:	details on: +61 2 9716 0014	
to my · Uisa Card Master Card (tick one) payable to: "The LEAD Group" being for membership	10127/100014	
	Freecall 1800 626 086	
• Please charge the amount of \$ to my • Visa Card Master Card (tick one) payable to:	(Australia only)	
"LEAF" (Lead Education and Abatement Fund) being for a donation		
Name on Card: Signature		
CARD NO. _ _ Expiry date:	/	
CONTACT DETAILS:		
Name or Company Name (for corporate subscriptions):		
Address:		
_		
Emoil Adduses#		

* DISCLAIMER: The views expressed herein are not necessarily the views of the Commonwealth, and the Commonwealth does not accept responsibility for any information or advice contained herein.

If you provide an email address, LEAF Donors and LEAD Group Members will receive an email notification whenever each new issue

of LEAD Action News is web-published.