Iron is an essential micronutrient. The total amounts involved are small; an adult female will have 2-4 grams of iron (around 38mg per kilo) in her body, an adult male up to six (around 50mg per kilo). Males tend to have more due to being larger, not suffering blood loss due to menstruation and some innate differences that begin at puberty. Adult males normally have three times the stored iron of premenopausal females (1000 mg to 300mg seems a widely quoted figure but I have not sighted the original source), a fact true for vegetarians as well as omnivores (480 mg to 160 mg; the same source problem applies).

The majority of iron in the body is bound in haemoglobin (or hemoglobin (US spelling)) (found in red blood cells [erythrocytes]) where it is used in transportation and processing of oxygen within the body. Up to 10% is used in myoglobin that stores oxygen in the muscles. Over 4% is used in lung metabolism playing a vital role in respiration. Most of the remainder is stored in the compound ferritin, over two thirds of which is deposited in the liver, the bulk of the remainder being split between bone marrow and reticulo-endothelial cells. Transport of iron within the body is handled by the serum molecule transferrin and at a cellular level by DMT1 [Divalent Metal Transporter 1]. The entire complex system is designed to ensure there is minimal free iron since free iron damages body organs through oxidation due to its highly reactive nature.

Smaller trace amounts fulfill key roles within the body with functions such as immune defense, neural function, DNA synthesis, cellular energy production, liver function, apoptosis, elastin production and collagen production. Iron levels are associated with bone strength and density; iron deficiency is linked to stress fractures in female athletes.

Iron cannot be systematically excreted from the body and is recycled within the body predominantly by macrophages of the reticulo-endothelial system. Macrophages of the spleen and liver generally recycle red blood cells before they reach the end of their natural life (120 days) eliminating 1% per day. The total iron absorbed from food each day is about 0.06% of total adult body iron, although for infants this figure can be multiplied by up to six. The main cause of iron loss from the body is blood loss (including significant losses inside the gut, particularly for athletes). This is the primary determinant of iron status, though some iron is lost through sweat (peaking within half an hour of heavy sweating) and skin loss. Losses from urine are minimal (about 0.1 mg). For most women menstruation will double to triple iron loss, with losses being slightly higher for adolescents, but it can be even higher. Diet cannot outweigh heavy blood loss. Women with heavy menstrual flow should see their doctors as some medication (including the contraceptive pill) can reduce menstrual bleeding.

Iron & lead: interactions and iron supplementation

Low iron levels are associated with higher blood lead levels, though there is no direct evidence of causation. Iron and lead occupy similar sites within the human body and so compete for likely binding sites particularly during absorption. Iron deficiency increases the rate of lead transfer to the brain in rats since they share a common transporter (DMT1). Rat studies indicate iron may be able to reduce lead induced apoptosis (programmed cell death) in the brain and reduce lead related disruption during brain development.

Rectifying significant iron deficiency may significantly impact blood lead levels. With pregnancy it directly impacts on the blood lead of the newborn. Low maternal iron levels or high lead levels increase the risk to the...
feotus of schizophrenia later in life. With children, correcting iron (or zinc) deficiency may lead to the cessation of pica (the compulsive consumption of non-food items such as paint or clay) which can be a source of lead contamination.

On the other hand, the evidence is poor for supplementation where iron intake is adequate, especially with low lead levels. There might still be advantages to iron supplementation for individuals whose environmental exposure is through ingestion.

Iron levels can be modified by diet though the role of individual nutrients should not be overstated. The body regulates the absorption of iron, so iron absorption falls as iron levels rise, due to the influence of the hormone hepcidin. The more hepcidin is produced by liver cells, the less iron will be absorbed. Rapid changes in iron status should not be expected.

Iron cooking vessels: The following items have their iron content more than doubled when cooked in iron container without a protective surface. Rear Row: red cabbage, tomato, rice, corn meal. Front Row: tomatoes, capsicum (bell or banana peppers in USA), pureed vegetables, wild rice, apple sauce, scrambled egg, corn meal. Foreground: scrambled egg. Not pictured: milk.

Iron consumption & iron levels: A long term project

Iron levels can be modified by diet though the role of individual nutrients should not be overstated. The body regulates the absorption of iron, so iron absorption falls as iron levels rise, due to the influence of the hormone hepcidin. The more hepcidin is produced by liver cells, the less iron will be absorbed. Rapid changes in iron status should not be expected.

Iron absorption enhancers

In terms of iron enhancement (increasing the body’s iron level) one of the easiest methods is increasing meat in the diet. A significant quantity of the iron in meat is haem (or heme (US spelling)). Between 15-40% of haem iron in the diet is absorbed compared with 1-15% of non-haem iron. Haem iron is found in animal products and some supplements, whereas non-haem iron is found in animals, plants and supplements. Cooked beef contains more haem iron (65% of iron content) than cooked pork (39%) and poultry or fish (26%).

For vegetarians and vegans a good supplementation technique is through cooking acidic vegetables (such as tomatoes or cabbage) in non enameled cast iron pots. Non haem iron absorption can be reduced if stomach acidity is impaired (for instance by aging, infection or the use of antacids). Vitamin C (ascorbic acid) clearly enhances non-haem iron absorption, though its impact should not be overstated. Vitamin C may also enhance iron’s capacity to displace lead during food absorption. Fish oil (and/or carbohydrates) enhances iron absorption where certain significant inhibitors are present.

Iron cooking vessels: The following items have their iron content more than doubled when cooked in iron container without a protective surface. Rear Row: red cabbage, tomato, rice, corn meal. Front Row: tomatoes, capsicum (bell or banana peppers in USA), pureed vegetables, wild rice, apple sauce, scrambled egg, corn meal. Foreground: scrambled egg. Not pictured: milk.

Iron consumption & iron levels: A long term project

Iron levels can be modified by diet though the role of individual nutrients should not be overstated. The body regulates the absorption of iron, so iron absorption falls as iron levels rise, due to the influence of the hormone hepcidin. The more hepcidin is produced by liver cells, the less iron will be absorbed. Rapid changes in iron status should not be expected.

Iron absorption enhancers

In terms of iron enhancement (increasing the body’s iron level) one of the easiest methods is increasing meat in the diet. A significant quantity of the iron in meat is haem (or heme (US spelling)). Between 15-40% of haem iron in the diet is absorbed compared with 1-15% of non-haem iron. Haem iron is found in animal products and some supplements, whereas non-haem iron is found in animals, plants and supplements. Cooked beef contains more haem iron (65% of iron content) than cooked pork (39%) and poultry or fish (26%).

For vegetarians and vegans a good supplementation technique is through cooking acidic vegetables (such as tomatoes or cabbage) in non enameled cast iron pots. Non haem iron absorption can be reduced if stomach acidity is impaired (for instance by aging, infection or the use of antacids). Vitamin C (ascorbic acid) clearly enhances non-haem iron absorption, though its impact should not be overstated. Vitamin C may also enhance iron’s capacity to displace lead during food absorption. Fish oil (and/or carbohydrates) enhances iron absorption where certain significant inhibitors are present.
Alcohol reverses the effect of genes governing the hormone hepcidin (decreasing hepcidin levels) leading to much higher iron absorption. It is important to note that in spite of high iron levels, individuals who consume significant amounts of alcohol are up to five times more likely to have elevated blood lead and, in the case of pregnant women, are more likely to transfer lead to the fetus.
Iron absorption inhibitors

Calcium can reduce iron absorption by 50-60% but the experimental data contains inconsistencies and its impact on a whole diet is difficult to assess. It is the only inhibitor that affects both haem and non-haem iron.

The following comments on inhibitors apply only to non-haem iron:

Soy proteins inhibit iron absorption unless the product is fermented (like traditional soy sauce, tempe or miso). Phytic acid [phytate in salt form] (found abundantly in whole grains, bran, nuts and seeds) can reduce iron absorption by as much as 90%. Even small quantities significantly inhibit iron absorption. However this inhibitory effect is significantly reduced by the presence of ascorbic acid, with vitamin C’s impact being proportional to the phytate content.

Calcium & soy: The pictured quantity of milk or cheese would minimize iron absorption, half that would little impact. For milk products (like yogurt) check label (impacts at 300ml or more with impact rapidly accelerating). Unfermented soy products (beans, milk and meat substitutes) inhibit iron absorption but are high in iron.

Phytates: The most powerful iron inhibitors. Least inhibitory when baked with yeast (right rear: wholegrain bread) and should always be consumed with vitamin C (left rear: apple & blackcurrant juice). *Middle row*: baked beans, beans (black turtle, black eye, lima, white, barlotti), bran, peanuts *Front row*: sunflower & sesame seeds, peas, beans, nuts (almond, brazil, cashew), muesli.
Tannins (polyphenols found in tea) can reduce absorption by up to 90\% 103 (generally closer to two thirds 104) but dissipate rapidly while other polyphenols found in coffee have roughly half the effect but are longer lasting 105. Carotenoids (pigments in other than light green vegetables) and vitamin C can negate the impact of polyphenols 106, 107.

Polyphenols: The above items contain polyphenols that may inhibit iron absorption. Note the considerable overlap with phytates. *Left to Right* Nuts (almond, brazil, cashew) beans (black turtle, black eye, lima, white, barlotti), coffee, tea, wine, string beans, snow peas, chocolate, nuts (peanuts), lentils, peanut butter, baked beans *Not Pictured: Sorghum*

Carotenoids – Some of the carotenoids found in the items pictured above may be able to counteract the inhibitory impact of polyphenols in coffee & tea. *Top row* Silver beet (spinach in Australia), yellow Indian corn, endives, lettuce, ruby red grapefruit juice, basil. *Middle row* Squash, red cabbage, broccoli, watermelon, pink grapefruit, cabbage, pumpkin. *Lower row* bananas, asparagus, carrots, tomatoes, red onions, red peppers, feijoa, guavas, apples, red peppers, beans, peas, banana capsicum (banana peppers in USA), avocado. *Not pictured* Pimentos, pepper grass, parsley, kiwi fruit.
Egg whites (egg albumin) can inhibit iron absorption by 27% per egg.\(^\text{108}\)

Egg whites: Products that contain egg whites (such as pavlova centre rear) severely inhibit iron absorption and should be replaced with products such as papaya and egg yolk pudding (as vitamin C will enhance iron absorption from the egg). Simple ceramic egg separators are readily available. Traditional Italian gelato (not all gelato) may use egg yolks (right bowl) or less frequently egg whites (left bowl).

Metallic nutrients: Relatives in competition

Zinc supplements can inhibit iron absorption but only at significant levels\(^\text{109}\) (doses of 15 mg/day seem to have no impact). Iron supplementation should have minimal impact on zinc levels\(^\text{110}\) though an impact is possible\(^\text{111}\). Consuming iron supplements on other than a daily basis should minimize the problem\(^\text{112}\). Copper deficiency (generally caused by excessive zinc supplementation\(^\text{113}\)) inhibits iron absorption in rats\(^\text{114}\) and can negate iron supplementation\(^\text{115}\)16. Manganese severely impacts iron absorption\(^\text{117}\) and its absorption is hindered by high iron stores\(^\text{118}\).

Iron supplementation: approach with caution

Iron supplementation either directly by pill or multi-vitamin should be undertaken with extreme care; particularly with children\(^\text{119}\)120. Where supplements are taken low dosages may be almost as effective as high doses\(^\text{121}\)122 and

Carotenoids & Vitamin C: The items (pictured above) are high in both of these nutrients and should optimize iron absorption when polyphenols are present: Left to right: kale (in pot), thyme, banana capsicum (banana pepper in USA), capsicum (bell peppers in USA), red pepper, guava, broccoli, feijoa, kiwi fruit.

General Note: Not all polyphenols inhibit iron absorption and there insufficient evidence to know exactly how effectively individual food items that contain carotenoids can offset those that do.
may even produce superior long term results with less risk. A recent study of rats’ brains found that a lower level of iron supplementation had a more positive effect on lead-induced damage than high level iron supplementation.

Although the body loses iron (eg through menstruation) it does not systematically excrete iron, and therefore the cumulative effect from supplementation can be dangerous; a continuous load exceeding 1-2 mg/day can eventually result in iron overload leading to organ failure. Studies of pregnant women indicate that weekly iron supplementation may be preferable to daily supplementation. Weekly or biweekly supplementation can radically reduce the risk of side effects from iron supplementation.

High Iron levels: Impacts

It is worth remembering that iron is also a neurotoxin and that in the USA iron is the largest cause of fatal accidental poisonings in children under 6. High iron levels enhance the effect of malaria and tuberculosis. High levels of iron doubles the risk of diabetes. Having both high iron and high Very Low Density Lipoprotein (VLDL) cholesterol levels appears to doubles the risk of cancer and triples risk of Alzheimer’s disease. High iron levels impact on the liver and can lead to liver failure.

High levels of iron during pregnancy are associated with gestational diabetes mellitus. The birth weight of infants can be adversely affected by high maternal iron levels. It must be emphasized however that for most individuals the risks of high iron during pregnancy are considerably less than those of low iron; the argument for considering supplementation is strong.

‘Iron deficiency is not a diagnosis’

Remember that iron deficiency can be the result of disease including cancer. An inadequately balanced diet may be.

CITATIONS

1. Iron Jane Higdon Micronutrient Information Center, Linus Pauling Institute, Oregon State University http://lpi.oregonstate.edu/infocenter/minerals/iron/
7. The iron balancing act: vegetarians may have the edge Loma Linda University http://www.llu.edu/llu/vegetarian/iron.html
17 Trace or Micro Minerals NHM 362: Iron College of Human Environmental Sciences University of Alabama
18 Iron Biology in Immune Function, Muscle Metabolism and Neuronal Functioning John L. Beard The Journal of Nutrition
19 Iron Metabolism and Storage Graham Jones Sydney Pathology St Vincent's Hospital Sydney
21 Trace or Micro Minerals NHM 362: Iron College of Human Environmental Sciences University of Alabama
22 Iron Metabolism and Storage Graham Jones Sydney Pathology St Vincent's Hospital Sydney
24 Iron Metabolism and Storage Graham Jones Sydney Pathology St Vincent's Hospital Sydney
25 Iron Biology in Immune Function, Muscle Metabolism and Neuronal Functioning John L. Beard The Journal of Nutrition
27 Role of red meat in the diet for children and adolescents Geoffrey Cleghorn The Free Library by Farlex
http://www.thefreelibrary.com/role+of+red+meat
28 Iron Biology in Immune Function, Muscle Metabolism and Neuronal Functioning John L. Beard The Journal of Nutrition
137:524S-530S, February 2007 http://jn.nutrition.org/cgi/reprint/137/2/524S
30 Iron Jane Higdon Micronutrient Information Center, Linus Pauling Institute, Oregon State University
http://lpi.oregonstate.edu/infocenter/minerals/iron/
32 Trace or Micro Minerals NHM 362: Iron College of Human Environmental Sciences University of Alabama
33 The Molecular Perspective: Cytochrome P450 David S. Goodsell The Oncologist 2001;6:205-206
http://theoncologist.alphamedpress.org/cgi/reprint/6/2/205
http://www.fasebj.org/cgi/content/meeting_abstract/22/2_MeetingAbstracts/672
39 Iron Biology in Immune Function, Muscle Metabolism and Neuronal Functioning John L. Beard The Journal of Nutrition
http://jasn.asnjournals.org/cgi/reprint/18/2/394.pdf
42 Trace or Micro Minerals NHM 362: Iron College of Human Environmental Sciences University of Alabama
43 Iron Metabolism and Storage Graham Jones Sydney Pathology St Vincent's Hospital Sydney

46 Gastrointestinal (GI) bleeding in endurance runners. Stephanie Horn, Edward R. Feller AMA Journal Winter 2003 http://findarticles.com/p/articles/mi_m0NHG/is_1_16/ai_98542872/pg_1?tag=content;coll1

50 The Interaction of Iron and Erythropoietin Brigham's and Women's Hospital Harvard Education http://sickle.bwh.harvard.edu/iron_epo.html

55 Relation of Nutrition to Bone Lead and Blood Lead Levels in Middle-aged to Elderly Men: The Normative Aging Study Yawen Cheng, Walter C. Willett, Joel Schwartz, David Sparrow, S Weiss, and H Hu http://aje.oxfordjournals.org/cgi/content/abstract/147/12/1162

58 Disorders of the Iron Metabolism: Iron absorption Brigham's and Women's Hospital Harvard Education http://sickle.bwh.harvard.edu/iron_absorption.html

62 Association between blood lead concentrations and body iron status in children J W Choi, S K Kim Archives of Disease in Childhood. 2003;88;791-792 http://adc.bmj.com/cgi/reprint/88/9/791

68 Pica SBN Dugan http://www.healthatoz.com/healthatoz/Atoz/common/standard/transform.jsp

69 Managing Elevated Blood Lead Levels Among Young Children: Chapter 4 - Nutritional Assessment and Interventions CDC Advisory Committee on Childhood Lead Poisoning Prevention http://www.cdc.gov/nceh/lead/casemanagement/caseManage_chap4.htm

78 The Interaction of Iron and Erythropoietin Brigham’s and Women’s Hospital Harvard Education http://sickle.bwh.harvard.edu/iron_epo.html

80 The iron balancing act: vegetarians may have the edge Loma Linda University http://www.llu.edu/llu/vegetarian/iron.html

82 Heme and Chlorophyll Intake and Risk of Colorectal Cancer in the Netherlands Cohort Study Helena F. Balder, Johande Vogel, Margie C.J.F. Jansen, Matty P. Weijenberg, Piet A. van den Brandt, Susanne Westenbrink, Roelof van der Meer and R. Alexandra Goldbohm Cancer Epidemiology Biomarkers & Prevention Vol. 15, 717-725, April 2006 http://cebp.aacrjournals.org/cgi/content/full/15/4/717

The Effect of Ascorbic Acid Supplementation on the Blood Lead Levels of Smokers
Earl B. Dawson, Douglas R. Evans, William A. Harris, MC Teter, WJ McGanity
http://www.ajcn.org/cgi/reprint/18/2/166.pdf

Oily Fish Increases Iron Bioavailability of a Phytate Rich Meal in Young Iron Deficient Women
Santiago Navas-Carretero, Ana M. Pérez-Granados, Beatriz Sarriá, A Carbajal, MM Pedrosa, MA Rae, SJ Fairweather-Tait, and MP Vaquero
http://www.ajcn.org/cgi/content/abstract/27/1/96

The Interaction of Alcohol and Iron-Overload in the in-vivo Regulation of Iron Responsive Genes
Callie Crist, Elizabeth Klein, John Gollan and Dee Harrison-Findik, Jonathan Frye

Effects of Alcohol Consumption on Indices of Iron Stores and of Iron Stores on Alcohol Intake Markers
J. B. Whitfield, G. Zhu, A. C. Heath, L. W. Powell, and N. G. Martin

Determinants of the Blood Lead Level of US Women of Reproductive Age
Lee, Mi-Gyung Chun, Ock Kyong Sung, Wan O.
Journal of the American College of Nutrition
http://www.ajcn.org/cgi/reprint/24/1/1

Factors influencing the difference between maternal and cord blood lead
Harville, EW Hertz-Picciotto, I Schramm, M Watt-Morse, M Chantala, K Osterloh, J Parsons, PJ Rogan, W
Occupational and Environmental Medicine Online
http://oem.bmj.com/cgi/reprint/6/2/12

Calcium: effect of different amounts on nonheme and heme-iron absorption in humans
Leif Hallberg, Mats Brune, Martine Erlandsson, A-S Sandberg, and L Rossander-Hult
Am J Clin Nutr 1999;53:112-19
http://www.ajcn.org/cgi/reprint/53/1/112

Calcium Intake Is Weakly but Consistently Negatively Associated with Iron Status in Girls and Women in Six European Countries
J Nutr 1999;129:963-968.
http://jn.nutrition.org/cgi/reprint/129/5/963

Inhibitory effects of dietary calcium on the initial uptake and subsequent retention of heme and nonheme iron in humans: comparisons using an intestinal lavage method
Zamzam K (Fariba) Roughhead, Carol A Zito, and Janet R Hunt
http://www.ajcn.org/cgi/reprint/82/3/589

Effect of soy protein on nonheme iron absorption in man
Leif Hallberg and Lena Rossander
http://www.ajcn.org/cgi/reprint/36/3/514

Effect of traditional oriental soy products on iron absorption
http://www.ajcn.org/cgi/reprint/51/5/873

Food Safety and Toxicity
John De Vries
CRC Press 1997
http://books.google.com/books?id=ag4z1Pp9cLAC&pg

The influence of different protein sources on phytate inhibition of nonheme and heme iron absorption in humans
Manju B Reddy, Richard F Hurrell, Marcel A Juillerat, and JD Cook
http://www.ajcn.org/cgi/reprint/63/2/203

Iron Metabolism and Storage
Graham Jones Sydney Pathology St Vincent's Hospital Sydney

Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages
Richard F. Hurrell, Manju Reddy and James D. Cook
Br J Nutr 1999, 81, 289–295
http://journals.cambridge.org/download.php?file=%2FBJN%2FBJN81_04%2FS00071

Inhibition of food iron absorption by coffee
Timothy A Morck, Sean A Lynch, James D Cook
http://www.ajcn.org/cgi/reprint/37/3/416

Disorders of the Iron Metabolism: Iron absorption
Brigham's and Women's Hospital [Note that this article predates the discovery of the regulatory role of hepcidin or DMT1; contrast with Forging a field]
http://sickle.bwh.harvard.edu/iron_absorption.html

Plant Pigments Enhance Iron Absorption

Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption
David Siegenthen, Roy D Baynes, Thomas H Bothwell, BJ Macfarlane, RD Lamparelli, NG Car, P MacPhail, U Schmidt, A Tal!, and F Mayet
http://www.ajcn.org/cgi/reprint/53/2/537

Prediction of dietary iron absorption: an algorithm for calculating absorption and bioavailability of dietary iron
Leif Hallberg and Lena Hulthén
http://www.ajcn.org/cgi/content/full/71/5/1147
The Levels of Calcium and Zinc that Are Found Naturally in Foods or in Calcium-Fortified Foods Do Not Affect Iron Absorption Penelope Nestel and Ritu Nalubola ILSI
www.geocities.com/tiger_angie/ironcalc.pdf

http://www.ajcn.org/cgi/reprint/85/1/131

Micronutrient interactions: effects on absorption and bioavailability Brittmarie SandstroÈm British Journal of Nutrition (2001), 85, Suppl. 2, S181±S185
http://journals.cambridge.org/download.php?file=%2FBJN%2FBJN85_S2%2FS000711450100109Xa.pdf&code=8fa23a52c05c78cc50aadfcbedad50cd

Element of caution: a case of reversible cytopenias associated with excessive zinc supplementation Julie A. Irving, Andre Mattman, Gillian Lockitch, Kevin Farrell and Louis D. Wadsworth CMAJ July 22, 2003; 169 (2) http://www.cmaj.ca/cgi/content/full/169/2/129

Dietary Copper Deficiency Reduces Iron Absorption and Duodenal Enterocyte Hephaestin Protein in Male and Female Rats Philip G. Reeves, Lana C. S. DeMars, W. Thomas Johnson and Henry C. Lukaski J. Nutr. 135:92-98, January 2005 http://jn.nutrition.org/cgi/content/full/135/1/92

Signs of Iron Deficiency in Copper-deficient Rats Are Not Affected by Iron Supplements Administered by Diet or by Injection Reeves, Phillip and Demars, Lana Journal of Nutritional Biochemistry Sepr 1, 2006 http://www.ars.usda.gov/research/publications/publications.htm [address does not permit hyperlink form authors machine]

Copper Jane Higdon Micronutrient Information Center, Linus Pauling Institute, Oregon State University http://lpi.oregonstate.edu/infocenter/minerals/copper/

http://www.ajcn.org/cgi/reprint/54/1/152

Manganese Jane Higdon Micronutrient Information Center, Linus Pauling Institute, Oregon State University http://lpi.oregonstate.edu/infocenter/minerals/manganese/

Iron Jane Higdon Micronutrient Information Center, Linus Pauling Institute, Oregon State University http://lpi.oregonstate.edu/infocenter/minerals/iron/

How much iron do pregnant women need? Steve Austin Original Internist Sept 2005 http://findarticles.com/p/articles/mi_m0FDL/is_3_12/ai_n17211125/pg_2?tag=content:col1

Iron supplements might harm infants who have enough. Science News http://esciencenews.com/articles/2008/05/05/iron.supplements.might.harm.infants.who.have.enough

Iron overload and cofactors with special reference to alcohol, hepatitis C virus infection and steatosis/insulin resistance
Yutaka Kohgo, Katsuya Ikuta, Takaaki Ohtake, Yoshihiro Torimoto, Junji Kato

Association of Elevated Serum Ferritin Levels and the Risk of Gestational Diabetes Mellitus in Pregnant Women: The Camden study
XINHUA CHEN, THERESA O. SCHOLL, T. PETER STEIN
DIABETES CARE, VOLUME 29, NUMBER 5, MAY 2006 http://care.diabetesjournals.org/cgi/reprint/29/5/1077

Third trimester iron status and pregnancy outcome in non-anemic women: pregnancy unfavourably affected by maternal iron excess
T.T. Lao, K.-F. Tam and L.Y. Chan

Anemia and iron deficiency: effects on pregnancy outcome
Lindsay H Allen

The Plausibility of Micronutrient Deficiencies Being a Significant Contributing Factor to the Occurrence of Pregnancy Complications
Carl L. Keen, Michael S. Clegg, LA Hanna, L Lanoue, JM Rogers, GP Daston, P Oteiza and JY Uriu-Adams

Iron requirements in pregnancy and strategies to meet them
T H Bothwell

Iron supplementation - is it necessary for healthy pregnancy?
Sandra Elias
New Zealand College of Midwives Journal October 2007 http://findarticles.com/p/articles/mi_6845/is_37/ai_n28467158/print

Why Iron levels remain Low
Tony Pearce

The Global Burden of Iron Deficiency
Suchitra Chinthapalli
The Lancet Student June 4th, 2008
http://www.thelancetstudent.com/2008/06/04/the-global-burden-of-iron-deficiency/

Iron Metabolism and Storage
Graham Jones
Sydney Pathology St Vincent's Hospital Sydney